
1January 2008 www.virtualims.com 1/5

Welcome to the Virtual CICS user group newsletter. The Virtual CICS user group at www.fundi.com/virtualcics 
is an independently-operated vendor-neutral site run by and for the CICS user community. 

Virtual CICS user 
group presentation
The latest webinar from the 
Virtual CICS user group 
was entitled, “The CICS/
MQ Interface”, and was 
presented by Tom Dunlap, 
CTO at Themis, Inc. 

Tom has been working 
with CICS since its first 
release in April 1969. 

Virtual CICS user group:
Newsletter 50

Contents:

Virtual CICS user group  
  presentation 1
Meeting dates 4
Recent CICS articles 5
CICS news  5
About the Virtual CICS  
  user group 5

A copy of Aurora’s presentation is available for 
download from the Virtual IMS CONNECTION Web 
site at www.virtualims.com/presentations/

Throughout his career with 
CICS, he has developed 
applications, worked as a 
system programmer and 
administrator, been a lead 
architect for commercial 
software products that 
worked in CICS, and 
provided both applications 
and systems-level training 
to many corporations. 

Figure 1: MQ usage in a COBOL program



2

The extent of his coding 
exposure in CICS includes, 
COBOL, Assembler, PL/I, 
C, and Java. Beyond his 
CICS background, he has 
work with z/OS (and its 
predecessors back to OS 
MFT) and many related 
components at both the 
applications and systems 
levels. This operating 
system experience includes 
efforts as a lead architect 
for commercial software 
products. Also included 
during his career is 
extensive work with DB2, 
performance and capacity 
planning efforts, large system 
integration efforts, and 
problem solving for large 
corporate application and 
systems environments. For 
the past 20 years, he has 
also been involved with work 
on distributed environments 
including UNIX, Linux, and 
Windows. These efforts 
include working with products 
like TXSeries (CICS on 
distributed systems), DB2, 
IBM MQ, plus many other 
supportive products. These 
efforts also include the use 
of application development 
tools like IBM RAD and IDz, 
CICS Explorer, DB2 Data 
Studio, plus the IBM Problem 
Determination Tools.

Tom Dunlap started his 
presentation by looking at 
the application program. He 
said that each application 
program that executes using 
MQ call statements requires 
a few basic inclusions of 

generated code. The COPY 
statements required by 
all applications using MQ 
functions are CMQODV, 
CMQMDV, CMQGMOV, 
CMQPMOV, and CMQV 
SUPPRESS.

Looking at WS-VARIABLES, 
the MQ-CONN would 
normally be the handle 
acquired by an MQCONN 
function, but that call along 
with the MQDISC call are 
ignored by the CICS MQ 
interface. It is CICS itself 
that has performed the 
MQCONN to the queue 
manager. The MQ-HOBJ-I 
and MQ-HOBJ-O represent 
the handles, acquired on 
MQOPEN for a queue, used 
to specify which queue the 
other calls relate to. The 
MQ-COMPCODE and MQ-
REASON are the variables 
that the application must 
test after every MQ call to 
determine its success.

Tom recommended that 
larger message areas be put 
into the LINKAGE SECTION.  
The WORKING-STORAGE 
area is fine for messages 
of 200-300K. However, that 
size will vary depending on 
your CICS environment. 
When the application is 
using message areas in the 
LINKAGE SECTION, it will 
be responsible for performing 
a CICS GETMAIN command 
to acquire the storage for the 
message area.

The MQPUT1 call is a 
combination of an MQOPEN, 

MQPUT, and MQCLOSE in 
a single call. Often, a CICS 
application will work with a 
single message within a task, 
so this call saves you a bit 
of code, plus interacting with 
the MQ interface twice. This 
does mean less overhead to 
the executing task. However, 
this savings disappears when 
you process more than one 
message with an MQPUT1 
call. the actual MQPUT1 call 
itself is a “static call”, which 
means it will resolve to an 
actual module at Linkage 
Edit time. You cannot use the 
COBOL DYNAM option with 
MQ applications since the 
name on the call is not the 
actual module name.

Tom’s presentation included 
lots of other examples for 
application programs.

Figure 1 shows MQ usage 
in a COBOL program. The 
MQMD_MSGID will always 
be a unique, generated value 
as long as the applications 
do their part. The application 
is required to always set the 
attribute to MQMI_NONE or 
include the option MQPMO_
NEW_MSG_ID for every 
MQPUT or MQPUT1 call. 
If they do not provide this 
code, the MsgId generated 
on the first call is reused for 
all subsequent calls. This 
is because the generated 
MsgId is passed back to the 
application by MQ in the 
MQMD-MSGID attribute. 
This is intended to provide 
the application with a unique 



3

Figure 2: The CICS MQ interface

“tracking marker” for each 
message.

When retrieving messages, 
the MQMD_MSGID attribute 
should be set to MQMI_
NONE before the MQGET 
call, or the MQGMO_
MATCHOPTIONS attribute 
set with MQMO_NONE. 
If the application does not 
provide this code, then only 
the first message is retrieved 
and the second MQGET 
call issued will completely 
pass through the rest of 
the messages in the queue 
and return an error. This is 
because in the first MQGET 
call, the MsgId is populated 
with a valid value, so when 
the second MQGET is issued 
the queue manager acts 
like you are searching for a 
particular message which will 

not be found.

Tom Dunlap then turned 
his attention to using trace 
for an application program. 
He then looked at CEDF 
screens for the MQ interface. 
He next turned his attention 
to statistics for the MQ 
interface.

Looking at an example, he 
explained that the top portion 
contained basic information 
about the interface including 
the name of the queue 
manager, its MQ release, 
name of the initiation queue, 
plus the connection status 
and when the connection 
was established. It also 
shows the current number 
of tasks using MQ and the 
number of calls issued while 
the connection was not 

active (futile attempts). The 
next portion contained the 
total number of API calls 
issued, the number that have 
completed successfully, plus 
the name of the API crossing 
exit. The next portion 
contained the number of 
API calls by each type, from 
OPEN (MQOPEN) to SET 
(MQSET) requests. And the 
lower portion provided the 
number of internal MQ calls 
issued, number completed 
successfully, number of I/
Os required, and the number 
of times a TCB switch was 
necessary.

Tom next looked at MQ 
resource definitions.

Figure 2 gives a simple view 
of how CICS will interface 
to resource managers 



4

like IBM MQ or Db2. The 
key to working with other 
resource managers is the 
Task Related User Exit or 
TRUE programs. These 
are provided by CICS to 
provide the cross-region 
communication with the 
resource manager in the 
other address space.

The CICS application will 
execute the command to 
access one of the defined 
resource managers. These 
commands are the normal 
API functions expected by 
that resource manager, 
which include:

• CALL ‘MQxxxx’ – for 
WebSphere MQ requests

• EXEC SQL – for Db2 
requests

• EXEC DLI – for IMS 
requests

CICS maintains a pool of 
Task Control Blocks or TCBs 
to process these requests, 
thus freeing up the normal 
CICS TCBs to perform 
other work. There is an SI 
parameter, MAXOPENTCBS, 
that specified the number of 
TCBs CICS could use. All 
of the work performed on 
these TCBs is “threadsafe” to 
minimize TCB switching and 
improve performance.

The CKAM transaction is the 
“alert monitor” transaction 
for the MQ adapter. The 
transaction handles 
unscheduled events that 

are produced by the queue 
manager. This includes 
such events as the queue 
manager being shut down 
or waiting for the queue 
manager to start up.

The CKTI transaction is the 
CICS trigger monitor. The 
trigger monitors whether 
MQ performs MQGETs with 
wait on a define initiation 
queue (INITQ) associated 
with the application. In our 
case for the CICS region 
that CKTI is running in. 
When a trigger event occurs, 
the queue manager puts a 
message into the INITQ. This 
will wake up CKTI, which 
then analyzes the message 
contents (it is known as 
a trigger message) and 
will start the application it 
indicates.

Tom looked at these MQ 
resource definitions in some 
detail. He then explained 
SVC dump information for 
the MQ interface.

The upper portion of 
an “CICS MQ Interface 
Summary” from an SVC 
dump simply contains 
information about the MQ 
connection. This includes 
the name of the queue 
manager involved and its 
version. Another key piece 
of information is the name of 
the specified initiation queue. 
You can also see the current 
status of the connection. 
The “TRANSACTION 
SUMMARY” shows all the 

tasks in the CICS region 
that have or are currently 
accessing MQ resources. 
Much of the information is 
of minimal interest, such 
as TcaAddr, TieAddr, and 
Uowid. The LotAddr is the 
control blocks used for the 
task during execution. The 
Tcb in MQ indicates whether 
the task currently has an MQ 
request outstanding.

Tom then looked in detail at 
other parts of the SVC dump 
information.

To finish up, Tom looked 
at the different screens 
associated with the CKQC 
transaction and how they 
could be used.

A copy of Tom Dunlap’s 
presentation is available for 
download from the Virtual 
CICS user group Web 
site at http://fundi.com/
virtualcics/presentations/
CICSMQinterfaceMay19.pdf

You can see and hear the 
whole user group meeting on 
YouTube at https://youtu.be/
Vpn_ztynWN4.

Meeting dates
The following meeting dates 
have been arranged for the 
Virtual CICS user group:

• On 9 July 2019, Colin 
Pearce will be discussing, 
“How to solve CICS 
Enqueue problems”.



5

About the Virtual 
CICS user group
The Virtual CICS user group 
was established as a way for 
individuals using IBM’s CICS 
TS systems to exchange 
information, learn new 
techniques, and advance 
their skills with the product.

The Web site at www.fundi.
com/virtualcics provides a 
central point for coordinating 
periodic meetings (which 
contain technically-oriented 
topics presented in a webinar 
format), and provides 
articles, discussions, 
links, and other resources 
of interest to IBM CICS 
practitioners. Anyone with an 
interest in CICS is welcome 
to join the Virtual CICS 
user group and share in the 
knowledge exchange.

To share ideas, and for 
further information, contact 
trevor@itech-ed.com.

The Virtual CICS user group 
is free to its members. 

• The following meeting is 
on 10 September 2019, 
when Glenn Schneck, 
Principal Technical 
Architect at GT Software 
will be speaking.

We are using Webex for the 
user group meetings.

Recent CICS articles
All new Node.js in CICS 
Z Trial now available! by 
Natasha Mckenzie-Kelly on 
CICS DevCenter (26 April 
2019). You can find the 
article at: https://developer.
ibm.com/cics/2019/04/26/
node-js-in-cics-ztrial/

New enhancements to 
CICS Performance Analyzer 
v540 by Satish Tanna on 
CICS DevCenter (29 March 
2019). You can find the 
article at: https://developer.
ibm.com/cics/2019/03/29/
new-enhancements-to-cics-
performance-analyzer-v540/

Managing enterprise-
wide deployment of CICS 
Explorer by Dave Nice on 
CICS DevCenter (25 March 
2019). You can find the 
article at: https://developer.
ibm.com/cics/2019/03/25/
managing-enterprise-
wide-deployments-of-cics-
explorer/

CICS news
IBM has announced CICS 
Statistics Visualizer V1.0.1 

with more deployment 
options besides the original 
Docker deployment method. 
The tool allows users to 
check the health status 
of CICS regions faster by 
generating charts and graphs 
for their CICS statistics 
reports. Three types of report 
are available: Indicators 
Overview, Regions Overview, 
and Regions Trend Report. 
CICS Statistics Visualizer 
is provided free for CICS 
PA users only. More 
information can be found 
at https://developer.ibm.
com/cics/2019/03/08/cics-
statistics-visualizer/ 

Dynatrace has announced 
that it has extended 
Dynatrace, its AI-powered 
platform, to include IBM 
Z support for CICS, IMS, 
and middleware. This 
gives customers precise 
information about the 
performance of digital 
services across hybrid 
environments; from modern 
cloud applications to the 
mainframe. Dynatrace 
provides software intelligence 
to simplify enterprise cloud 
complexity and accelerate 
digital transformation. 
It provides end-to-end 
visibility by automatically 
discovering and mapping 
every transaction with a 
single AI-powered solution. 
This real time visibility, from 
cloud to the mainframe, gives 
enterprises a competitive 
advantage – they can 

eliminate inefficiencies and 
consequently, innovate at a 
faster rate. More information 
can be found at https://www.
dynatrace.com/news/press-
release/dynatrace-extends-
ai-powered-software-
intelligence-platform-
to-hybrid-mainframe-
environments/


