
1January 2008	 www.virtualims.com	 1/5

Welcome to the Virtual CICS user group newsletter. The Virtual CICS user group at www.fundi.com/virtualcics
is an independently-operated vendor-neutral site run by and for the CICS user community.

Virtual CICS user
group presentation
The latest webinar from the
Virtual CICS user group was
entitled, “LSR Tuning Today”.
It was presented by Eugene
S Hudders, President of C\
TREK Corporation.

Gene is president of C\TREK
Corporation, a company

Virtual CICS user group:
Newsletter 53

Contents:

Virtual CICS user group
 presentation	 1
Sponsors wanted	 6
Meeting dates	 6
CICS news	 6
Recent CICS articles	 6
About the Virtual CICS
 user group	 6

A copy of Aurora’s presentation is available for
download from the Virtual IMS CONNECTION Web
site at www.virtualims.com/presentations/

that developed C\TREK a
performance and problem
determination tool for CICS.
He has worked on IBM
mainframe computers for
over 50 years. He has made
presentations related to
CICS and VSAM at technical
conferences such as
SHARE, CMG, and WAVV.
In addition, Gene has written
several books on CICS

Figure 1: The very big I/O picture

2

and VSAM, in the areas
of problem determination
and tuning, as well as
many articles for technical
magazines on the same
topics. In his current position,
Gene continues to develop
new performance functions
for C\TREK software and
provides consulting and
educational services for
clients in the USA and Latin
America.

Eugene S Hudders started
the session by saying that
CICS uses three techniques
to handle VSAM files within
CICS TS: Non-Shared
Resources (NSR); Local
Shared Resources (LSR);
and Record Level Sharing
(RLS). In recent years, new
VSAM features announced
for CICS have been LSR/
RLS-oriented. The major
difference between the
three techniques lies in the
‘ownership’ of the resources.

NSR resources are used
exclusively by the file.
LSR resources are shared
between participating files.
And RLS resources are in
a different address space
(SMSVSAM) and require a
Coupling Facility (CF). CA
splits tie up the main task
TCB for NSR files. Gene
suggested the user group
might consider the use of the
CO TCB (multi-processor) or
consider moving the file to
LSR.

The advantages of using
LSR are:

•	 More efficient use of
virtual storage versus
NSR as resources are
shared.

•	 Better look-aside hit ratio
because the Sequence
Set Indexes (SSI) are
maintained in the buffer
pool.

•	 Tends to be more self-
tuning because buffers
are allocated on a Least
Recently Used (LRU)
algorithm keeping the
information for the more
active files in buffers at
the expense of lower
activity files.

•	 Only one copy of a CI
is allowed (better read
integrity).

•	 Can allocate up to 255
pools to segregate file
access. This provides
more strings and buffers
(VS is the limit). Best
used by VSAM threadsafe
(parallel access versus
single thread).

•	 Supports Transaction
Isolation.

Gene went on to say that
physical I/O costs CPU
cycles, and the best I/O is

Figure 2: KSDS structure and terms

3

the one that is not done.
He suggested that the
key is to reduce physical
I/O operations. One
misconception that many
people have is that a disk
cache hit doesn’t generate
physical I/O overhead. All
the I/O involved is shown in
Figure 1.

Figure 2 shows the structure
and terms associated with a
KSDS file.

Tuning LSR files is simply the
opposite of what Robin Hood
did. Robin Hood stole from
the rich to give to the poor. In
LSR you will steal from the
poor to give to the rich! In
LSR terms, the poor are low
to medium activity files, and
the rich are most active files.

So, the major contribution
made by low/medium activity

files in LSR is to provide their
resources so that higher
activity files can use them.

Gene recommended that
users define LSR pools
explicitly. They should,
initially, bring the system
up dynamically to get an
idea of the buffers and
strings required and the
maximum key length (test
environment). Then, using
the buffers defined, use
the definition to define the
data component. Initially,
use the same definition for
the index component. Run
transactions and determine
the actual buffers used.
Using this information, adjust
the buffers required for the
data and index components.
Always define a safety
valve buffer of 32K, if none
is defined. Then use a

performance monitor or CICS
statistics (STAT or EOD).
Once in production, monitor
and adjust as required.

Data buffer tuning is highly
dependent on a file’s access
patterns. Good look-aside hit
ratios for the data component
usually require a substantial
amount of storage to obtain
an 80%+ hit ratio. The
major cause is that the data
component for all the files
is usually very large (versus
the index component).
Good look-aside hit ratios
usually result in files with:
sequential activity; Read
for Update/Rewrite/Delete
activity; and concentrated
read activity. The LSR buffer
look-aside percentage can
be misleading. The percent
specified does not mean
that every file is getting

Figure 3: VSAM CA size

4

that percentage (remember
Robin Hood). The look-aside
percentage is the average of
all the files using that buffer.

When it comes to string
allocation, each pool can
have up to 255 strings. They
are usually tuned when
you get a wait on strings
condition. There are 2 types
of wait on strings for LSR:
wait on string related to the
number of strings allocated
to the file; and wait on
string related to the number
of strings allocated to the
pool. String allocations are
controlled by CICS. The
objective should be to have
the LSR string assignment
somewhere between 50%
to 60% of the peak string
usage.

The maximum key size is
255 bytes. Because LSR
control blocks are shared,
the maximum key length
must be defined (PLH control
block). If the maximum key
size specified for the LSR
pool is too small, the file
will not open. To avoid this
situation, many installations
define the maximum key size
as 255. The actual virtual
storage cost depends on the
number of strings.

An area that must be
monitored is the possibility of
a file monopolizing a buffer
in a pool. The problem is
that CICS does not provide
information regarding the

number of LSR buffers
being used by a file. The
statistics provided indicate
the activity, but this does
not translate into number of
buffers. A file could perform
100K accesses to the file, but
this does not translate into
number of buffers because it
could be that the access is to
one or a few buffers. There
are several options to resolve
this situation. You could
move the file to a separate
LSR pool; or increase the
number of buffers to reach
the file’s point of Diminishing
Return. Once you reach this
point, other files will have
access to buffers.

Hiperspace buffers were
designed to use Expanded
Storage (ES). ES worked
like a very fast synchronous
paging device. ES was less
expensive than real storage
and was 4K addressable (not
byte addressable like real
storage). z/Architecture does
not support ES. In order to
maintain this functionality,
ES is simulated using real
storage by z/OS. CICS
supports Hiperspace buffers
in LSR. However, you are
using real storage to simulate
ES. There’s a moving real
to real overhead. It’s better
to allocate the equivalent
Hiperspace buffers into the
regular LSR buffers. You
may want to use Hiperspace
buffers under the following
conditions if enough real

storage exists: you need
more than 32K buffers of
a specific size; or you are
running low on the region
virtual storage availability.

Fragmentation represents
the lost space due to the
difference in the CISZ and
the LSR buffer assigned to
handle the CI. The major
cause of fragmentation is
that VSAM has 28 different
CISZ available while CICS
LSR supports only 11 buffer
sizes. Some data component
fragmentation may be
acceptable, such as using
an 18K CISZ (non-VSAM/E)
to obtain the best disk
utilization. In this case, you
would use a 20K buffer with
a 2K or 10% cost of virtual/
real storage fragmentation.
Other fragmentation is not
acceptable, such as using
a 16K buffer to cover a 10K
CISZ because the user did
not define a 12K buffer.
Adjusting the CISZ to a data
component buffer size may
have some advantages,
for example, increasing a
CISZ from 5.5K to use an 8K
buffer. This takes advantage
of 2.5K (31%) lost virtual/
real storage. You can add
or adjust free space without
increasing the amount of
virtual or real used by CICS
LSR.

Some people think you
should use as many pools
as possible so files can
be segregated to reduce

5

buffer contention and/or
interference. Other people
think you should define
as few pools as possible
(preferably 1) so that
resources can be used more
efficiently. The things to bear
in mind are:

•	 LRU algorithm works best
with a larger number of
buffers.

•	 Do you allocate a ‘fudge
factor’ to each pool’s
definition?

•	 Are the files continuously
used? What happens to
the resources when the
file is in low activity?

•	 Unless you are using
VSAM threadsafe, access
to the different pools are
single threaded via the
QR TCB.

VSAM CA size (CASZ) is
an important tuning option.
CASZ is indirectly defined
through the primary and
secondary allocation. Bad
CASZ can occur for any file
that is incorrectly defined.
However, it is more prone to
happen for small files (less
than 1 cylinder). Incorrect
setting of the CASZ can
result in unnecessary index
CIs. Unnecessary index CIs
would require buffers. The
rule you must remember is
that all data CAs must be the
same size throughout the
file (primary and secondary).
If requested space is in

CYLINDERS, the CASZ will
be 1 cylinder. If requested in
TRACKS, use the Highest
Common Denominator.
Be careful when using
RECORDS, because it can
lead to bad CASZ. Figure 3
illustrates good and bad CA
size allocation.

CI/CA splits are the result
of adding new records or
extending the length of
variable length records.
Splits result in physical I/O
operations. Splits mean
that VSAM file can continue
to operate accepting the
split. However, many I/O
operations can result,
especially for a CA split. It
can be particularly bad if an
extent needs to be acquired.
Besides the actual number
of physical I/O operations
required to service the split,
there’s the cost of adding
a new extent (data and/or
index) because of additional
I/O activity to the catalog,
VVDS, and VTOC. CI/CA
splits can create free space
that cannot be used or has a
very low possibility of being
used.

There is a hidden cost
to CI/CA splits that is not
usually discussed. CI
splits take a single CI and
convert it to two CIs that are
approximately 50% filled.
Instead of being able to
access the data in one buffer,
you now need two buffers
(half-full) to access the

same amount of data. This
is a hidden cost of CI splits
and is important for most
active files. CA splits come
as a result of not having a
free CI in the CA, causing
the CA split. Splits can also
affect the index component
requiring additional indexes
and, therefore, more LSR
buffers.

VSAM allows for a file to
have multiple extents. Extent
processing has improved
over time (Space Constraint
Relief –DFSMS). The cost
of an extent occurs when
obtaining an extent because
the process involves
accessing and updating
the catalog, VVDS, and
the VTOC. The data set is
serialized during a CI/CA
split while the extent is being
processed. The data set is
serialized for CI/CA splits/
reclaims for VSAM, and the
data set is serialized for CA
splits/reclaims for RLS. This
can take time depending on
the workload.

As you can see, the
presentation was packed
with useful information, far
more than there is space for
in this newsletter.

A copy of Eugene S Hudders’
presentation is available
for download from the
Virtual CICS user group
Web site at fundi.com/
virtualcics/presentations/
LSRTuningNov19.pdf.

6

About the Virtual
CICS user group
The Virtual CICS user
group was established as
a way for individuals using
IBM’s CICS TS systems
to exchange information,
learn new techniques, and
advance their skills with
the product.

The Web site at www.
fundi.com/virtualcics
provides a central point
for coordinating periodic
meetings (which contain
technically-oriented topics
presented in a webinar
format), and provides
articles, discussions,
links, and other resources
of interest to IBM CICS
practitioners. Anyone with
an interest in CICS is
welcome to join the Virtual
CICS user group and
share in the knowledge
exchange.

To share ideas, and for
further information, contact
trevor@itech-ed.com.

The Virtual CICS user
group is free to its
members.

You can see and hear
the whole user group
meeting at https://youtu.be/
midDLKwvPA4.

Sponsors wanted
In order for this user group
to continue operating in
2020, we are looking for new
sponsors. We are looking for
an organization to pay for the
administration costs, host the
10 years’ worth of resources
on this Web site, and also
provide access to Webex
or similar so that we can
hold the virtual user group
meetings.

If you would like to find out
more about sponsorship,
please contact Trevor
Eddolls at trevor@itech-ed.
com.

Otherwise, the Web site and
this user group will cease to
exist at the end of this year.

Meeting dates
The following meeting dates
have been arranged for the
Virtual CICS user group
providing we find a sponsor
for 2020:

•	 On 14 January 2020,
Ezriel Gross, Principal
Solutions Advisor at
Rocket Software, will be
presenting.

We are using Webex for the
user group meetings.

CICS news
IBM has announced new
automated unit testing
capabilities for CICS COBOL
programs using Db2 with
IBM Developer for z/OS
(IDz) V14.2.1. Users are now
able to stub out CICS Db2
calls for COBOL programs
through the enhanced record
and playback functionality, as
well as export results in new
formats. The automation of
testing is a key component
for agile development.

More information can
be found at https://
developer.ibm.com/
mainframe/2019/10/22/
running-automated-unit-tests-
in-isolation-now-possible-for-
cics-db2-programs-with-ibm-
developer-for-z-os-v14-2-1/

Recent CICS articles
CICS Bundle Maven plug-
in 1.0.0 by Dave Nice on
CICS Developer Center
(14 November 2019). You
can find the article at:
https://developer.ibm.com/
cics/2019/11/14/cics-bundle-
maven-plug-in-1-0-0/

