
Oh, The Things
I’ve Seen

Db2 Stories and Best Practices

By Craig S. Mullins

(with a nod to Dr. Seuss)

© 2024, Craig S. Mullins

Agenda

• One Stats, Two Stats,
 Old Stats, New Stats

• RID-ing is Fundamental

• The DBA Will Review It

• A Small Matter of Lock Size

• Not Db2 at All

• Some General Best Practices

One Stats, Two Stats,
Old Stats, New Stats
Dealing With Outdated RUNSTATS

One stats

two stats

old stats

new stats

Things I’ve
Seen…

Scenarios
-1

• Scans data
• Gathers details on data
• Records statistics in the

Db2 Catalog
• Used to generate access

paths
• Can be used by DBAs, too

• RTS usually more accurate

Table Statistics
• CARDF

• Number of rows in the table (or partition)

• NPAGESF
• Number of pages containing data

• NACTIVEF
• Number of active pages in the table space

• PCTROWCOMP
• Percentage of rows that are compressed

Index Statistics
• NLEAF – number of active leaf pages
• NLEVELS – number of levels in the index
• CLUSTERRATIOF – the percentage of rows

that are in clustered order
• CLUSTERING – whether the index is the

clustering index
• FIRSTKEYCARDF – number of distinct

values for the first column of the index
• FULLKEYCARDF – number of distinct

values for the complete index key (all
columns in the key)

Column Statistics
Single Column
• COLCARDF – Number of distinct values for a column

• Assumes data is uniformly distributed
• HIGH2KEY – Second highest key value
• LOW2KEY – Second lowest key value

Multiple Correlated Columns
• SYSCOLDIST.CARDF – Number of distinct values for a

group of column
• Useful for correlated data
• (TYPE=C, NUMCOLS>1)

Distribution Statistics
• Non-Uniform Distribution Statistics

(NUDS), also called FREQVAL
statistics, are useful for determining
skew.
• Without them, data is assumed to be

uniform.
• SYSCOLDIST.FREQUENCYF – number of

times a given value (or values) occur(s)
• Can be collected for a single column

• (TYPE = F, NUMCOLS = 1)
• Or for multiple columns with

COLGROUP
• (TYPE = F, NUMCOLS > 1)

Histogram Statistics
• Statistics in quantiles over intervals

• aka Range statistics
• Maximum of 100 quantiles

• Fewer than 10 quantiles, reverts to
distribution statistics

• A column value belongs to only one quantile
• NULL has its own separate quantile

• Db2 will attempt to:
• keep the quantiles of similar size

• same # of rows, not same # of values
• avoid big gaps between the quantiles

What Should You Collect?

RUNSTATS
Guidelines (1)

• Collect RUNSTATS for all indexes

RUNSTATS TABLESPACE DSN8D81A.DSN8S81D

 INDEX (ALL)

• Collect RUNSTATS for columns in
sensitive WHERE and ORDER BY
clauses

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 TABLE (DSN8810.EMP)

 COLUMN (FIRSTNME, LASTNAME, SALARY)

RUNSTATS Guidelines (2)
• Collect RUNSTATS for skewed data

RUNSTATS TABLESPACE

DSN8D81A.DSN8S81E

 TABLE (DSN8810.EMP)

 COLGROUP(JOB) FREQVAL COUNT 10

RUNSTATS Guidelines (3)
• Collect RUNSTATS for correlated data

RUNSTATS TABLESPACE

 DSN8D81A.DSN8S81E

 TABLE (DSN8810.EMP)

 COLGROUP(CITY, STATE, ZIP)

 FREQVAL COUNT 10

RUNSTATS Guidelines (4)
• Collect Histogram RUNSTATS for range skews

• Stores QUANTILENO, LOWVALUE, and HIGHVALUE for up to 100 quantiles

RUNSTATS INDEX (OWNER.XTRG)

 HISTOGRAM NUMCOLS 2

Breakfast 6:00-6:45 Slow

6:46-8:10 Busy

8:11-11:25 Slow

Lunch 11:25-1:15 Busy

1:16-1:45 Moderate

1:46-4:55 Slow

Dinner 4:56-5:45 Moderate

5:46-7:15 Busy

7:16-11:00 Slow

e.g.) DATE, TIMESTAMP

Things I’ve Seen
Outdated statistics,

 a silent foe,

Caused the RID pool

 to overflow.

Queries stumbled,

 indexes failed,

As SQL's prowess

 became impaled.

RID-ing is Fundamental!
Watch your Access Paths and RIDs!

https://tinyurl.com/listpreDb2-12

What is a RID?

When does Db2 use
RIDs in access paths

• The RID pool is used for:
• Enforcing unique keys for multi-row updates

• List prefetch

• Multiple index access

• Hybrid joins

• The RID pool is allocated dynamically as
it is needed

• MAXRBLK zparm defines size of the RID pool

• Setting MAXRBLK to 0 disables RID list processing

• Work file can be used for RID lists when
RID pool storage is insufficient

• MAXTEMPS_RID zparm defines the maximum
number of RIDs that can be stored in the work
file

What is List
Prefetch?
• When list prefetch is involved in

an access path:
• Db2 retrieves a list of RIDs

through a matching index scan
on one or more indexes.

• The list of RIDs is sorted in
ascending order by page
number.

• Pages are prefetched in order,
using the sorted list of RIDs.

• Ideal for non-sequential qualified
rows

• Skip sequential or sparse
• Large DATAREPEATFACTORF

When is List Prefetch Used?
• Typically, with a single index that has a

cluster ratio lower than 80%
• Sometimes on indexes with a high cluster

ratio, if the estimated amount of data to be
accessed is too small to make sequential
prefetch efficient, but large enough to require
more than one regular read.

• Always to access data by multiple index
access.

• Always to access data from the inner table
during a hybrid join.

• Typically for updatable cursors when the
index contains columns that might be
updated.

• When IN-list predicates are used through an
in-memory table as matching predicates
(ACCESSTYPE='IN').

https://www.ibm.com/docs/en/db2-for-zos/12?topic=u-list-prefetch-prefetchl

But List
Prefetch Can
Cause
Problems

Types of RID
Problems

RDS Limit
exceeded

The number of
RIDs that can fit
into the guaran-
teed number of
RID blocks was

greater than 25%
of the table.

DM Limit
Exceeded

The number of
RID entries was
greater than the
physical limit of

approximately
26 million RIDs.

Proc.Lim.
Exceeded

RID pool storage
was exceeded.

Overflow

RID list
overflowed to a

work file.

* Index access abandoned and replaced with tablespace scan.

* * *

RDS Problems Identified

RDS Limit Failure Details

Statement Numbers

Sometimes the
PLAN_TABLE Data was
Not There!

• Best practice was EXPLAIN(YES)

• Either they didn’t follow it or…

• They deleted PLAN_TABLE data over
time as the table grew

• Solution?

• EXPLAIN PACKAGE

• Nobody there had ever done this

• Execution requires (one of):

• SQLADM, SYSADM, SYSOPR, or
SYSCTRL

• And, of course, I did not have any of
those authorities

• Waited……

Most Common Reason
for RID Failures

• RUNSTATS!
• Never Run

• Inaccurate

• Outdated

Dealing with RID
Pool Failures

• Monitored daily for RDS
failures

• Captured package and
StmtNo

• Reviewed access paths
• Not always there

• Recommended fixes
• New index
• OPTIMIZE FOR 1 ROW

• Not always possible
• REBIND
• IDAA

QUERYACCELERATION(ELIGIBLE)

What I Did

Things I’ve Seen
So let us heed

 this cautionary tale,

And keep our statistics

 fresh without fail.

For in the world of data,

 chaos can reign,

And success relies

 on keeping stats sane.

The DBA Will
Review It

No Need to Worry!

Things I’ve Seen

With scrutinizing eyes

 and a meticulous hand,

The DBA reviews all…

 a task ever grand.

All queries and updates,

 each column and row,

No badness escapes,

 this we all know!

The Situation
• I was working on a team of DBAs for a

period of time

• Developers send “data fix SQL” to DBAs
to review and accept for accuracy

• Done instead of coding programs to
correct data problems

• Instead, just issue some SQL

• Mostly INSERT and UPDATE statements

• One group did this frequently

• Usually, a dozen or so statements

• And, oh yes, this was production!

Then…
• …I got a request with

hundreds and hundreds of
INSERT and UPDATE
statements!

The Truth
• A DBA will find 10 problems

in a 12-line SQL
statement…

• But nothing in a 7,500-line
program!

What I Did

• I refused to review it.

• It is an application issue.

• Instead, I took an image
COPY of the tables that
were being modified before
leaving for the day.

• I knew I’d have something
to fall back to if the
modifications were somehow
wrong.

Also
• I recommended to the DBA team

lead that reviewing SQL this way is
not a good plan moving forward

• Why?

• If the DBA reviews it and misses
something it becomes the
DBA’s fault!

• It is better to write “fix”
programs to implement changes
because it can be easier to
track and back out problems

• If data is constantly needing to
be modified like this there is
some sort of root cause that
should be analyzed and
remediated instead of just
constantly fixing data

In the realm of data,
 where things are not right,

Lies a daunting task,
 a DBA’s great fight.

Hundreds of statements,
 awaiting review,

But why the DBA? What did he do?

Line by line, the DBA delves,

Through the pages of statements,
 where the data is shelved.

But as the pile grows taller,
 the hours they wane,

And efficiency falters,
 under the strain.

Instead let us honor the
 programmer's art,

In crafting a program
 to play its true part.

To change so much data
 correctly it seems,

A program solves
 all of the DBA’s dreams!

A Small Matter
of Lock Size

Escalating locking problems!

Lock Escalation!

In Db2 land,
 so big and so wide,
Lived apps that locked,
 oh, how they'd collide!
When queries ran,
 all eager and quick,
Locks would escalate,
 creating quite the shtick.

Lots of Lock Escalations Occurring
• Lock escalation occurs when a threshold is hit

• DSNZPARMs
• NUMLKUS
• NUMLKTS
• Db2 12 FL 507 delivers built-in global

variable so these can be set
at the package level

• LOCKMAX

• What is a lock escalation?

• Row or page locks, held by an application process on a
single table or tablespace, are released.

• And a tablespace lock, or a set of partition locks is acquired.

• When locks escalation occurs, Db2 issues message DSNI031I,
which identifies the tablespace for which lock escalation occurred,
and some information to help identify the plan or package that was
running when the escalation occurred.

Finding Them

• Viewed MSTR log
• Looking for DSNI031I

• Table space (Resource)
• Package
• Statement number

Recurring Theme

• Escalating on tablespaces
with LOCKSIZE ROW

• Never re-evaluated LOCKMAX
• All were set to SYSTEM

• Moving from PAGE to ROW locking
means acquiring more locks because
there are multiple rows per page
• But when they changed from ANY/PAGE

to ROW no add’l analysis was done!

Check COMMIT
Frequency
• Some programs had no

COMMIT logic
• This should NEVER be the case

for any program that changes
data!

• Adjustments to programs
with COMMIT logic
• COMMIT more frequently to

reduce the instances of lock
escalation

• Single DELETE
• Piece-wise DELETE

Consider Setting
LOCKMAX

• Number of rows per page
multiplied by NUMLKTS
• Also take into account

compression

• Still may have issues with
NUMLKUS
• Consider the host variables

added with Db2 FL507
• SYSIBMADM.MAX_LOCKS_PER_TABLESPACE

• SYSIBMADM.MAX_LOCKS_PER_USER

Lock De-escalation!

First, it starts small, just a row or two,

 But as things heated up, it grew into view.

Shared locks turn exclusive, escalating high,

 Blocking other queries as they pass by.

So, programmers and admins dug right in,

 To smooth things out keeping problems to the min.

So, remember, dear friend, in Db2's domain,

 Lock escalation's a dance, a delicate game.

With finesse and precision, it keeps things in line,

 In the wondrous world of Db2, so fine!

Not Db2 at all
Big problems, it must be Db2!

Things I’ve Seen

In the realm of the mainframe,
 a mystery did brew,

A problem perplexed,
 with no clue what to do.

Db2, they suspected,
 the culprit for sure,

But beneath the surface,
 dwelled a different cure!

The Situation
• Hired to help with a

“significant performance
problem”

• System was an entangled
mass of parts
• Old application that ran on

batch, CICS, VSAM and flat
files

• Many program from old app
converted to Db2 and CICS,
but not all

• Other portions rewritten in
.NET using Oracle

A Few More
Details

• They had hired other experts
for the other parts of the
application

• Wanted me to focus on their
Db2 SQL

• I reviewed access paths and
tuned many statements
• Had to be implemented by

programmers

• Regular tests of the entire
application conducted
• Small performance gains

Then One of the Old Guys They Brought Out of
Retirement Had an Idea

Have you
looked at
the VSAM
files lately?

And…

• They had not been
attended to in years…
• Actually decades!

• Very disorganized.

• Somebody suggested
running AMS REPRO

What Happens
When REPRO
is Not Run on VSAM
Data Sets

• Disorganization!
• Data integrity issues
• Performance degradation
• Index inconsistencies
• Increased space usage
• Risk of duplicate records

Oh, the lesson learned,
 in this database tale,

To look beyond the obvious,
 without fail.

For sometimes the problem,
 though it may seem,

Is lurking elsewhere,
 in a different scheme.

The Lesson

Best
Practices
Some Good High-Level
“Things” to Do

High Level Best
Practices
• Keep maintenance up-to-date

• Ensure that appropriate RUNSTATS are being
run

• And kept up-to-date

• Automate as much as you can

• May require tools

• Make sure backups are taken for all database
objects (RTOs)

• And test your backups

• Make sure every program has a COMMIT
strategy in place!

• Document!

• And make the doc accessible!

• Be proactive.

Always Be Learning

Oh, The Things I’ve Seen!

Craig S. Mullins
President & Principal Consultant

IBM Champion for Data & AI
IBM Gold Consultant
mullc@craigsmullins.com

62

www.mullinsconsulting.com

https://www.mullinsconsulting.com/books.htm

© 2024, Craig S. Mullins

	Slide 1: Oh, The Things I’ve Seen
	Slide 2: Agenda
	Slide 3: One Stats, Two Stats, Old Stats, New Stats
	Slide 4: Things I’ve Seen…
	Slide 5
	Slide 6
	Slide 7: Table Statistics
	Slide 8: Index Statistics
	Slide 9: Column Statistics
	Slide 10: Distribution Statistics
	Slide 11: Histogram Statistics
	Slide 12: What Should You Collect?
	Slide 13: RUNSTATS Guidelines (1)
	Slide 14: RUNSTATS Guidelines (2)
	Slide 15: RUNSTATS Guidelines (3)
	Slide 16: RUNSTATS Guidelines (4)
	Slide 17: Things I’ve Seen
	Slide 18: RID-ing is Fundamental!
	Slide 19: What is a RID?
	Slide 20: When does Db2 use RIDs in access paths
	Slide 21: What is List Prefetch?
	Slide 22: When is List Prefetch Used?
	Slide 23: But List Prefetch Can Cause Problems
	Slide 24: Types of RID Problems
	Slide 25: RDS Problems Identified
	Slide 26
	Slide 28: Statement Numbers
	Slide 29: Sometimes the PLAN_TABLE Data was Not There!
	Slide 30: Most Common Reason for RID Failures
	Slide 31: Dealing with RID Pool Failures
	Slide 32: What I Did
	Slide 33: Things I’ve Seen
	Slide 34: The DBA Will Review It
	Slide 35: Things I’ve Seen
	Slide 36: The Situation
	Slide 37: Then…
	Slide 38: The Truth
	Slide 39: What I Did
	Slide 40: Also
	Slide 41
	Slide 42: A Small Matter of Lock Size
	Slide 43: Lock Escalation!
	Slide 44: Lots of Lock Escalations Occurring
	Slide 45: Finding Them
	Slide 46: Recurring Theme
	Slide 47: Check COMMIT Frequency
	Slide 48: Consider Setting LOCKMAX
	Slide 49: Lock De-escalation!
	Slide 50: Not Db2 at all
	Slide 51: Things I’ve Seen
	Slide 52: The Situation
	Slide 53: A Few More Details
	Slide 54: Then One of the Old Guys They Brought Out of Retirement Had an Idea
	Slide 55: And…
	Slide 56
	Slide 57: What Happens When REPRO is Not Run on VSAM Data Sets
	Slide 58
	Slide 59: Best Practices
	Slide 60: High Level Best Practices
	Slide 61: Always Be Learning
	Slide 62: Oh, The Things I’ve Seen!

