
IMS API's : You Don’t Know What you Don’t Know!!!

Dusty Rivers

Director z-Systems GT Software

drivers@gtsoftware.com

1

2

IMS API's : We are already doing that!!!!!

3

Lessons Learned, War Stories, Successes

4

We have an ESB to do all that!!!!!!!!!!!!!!!

7

What else don’t I know about????

Do You Have the Right Mainframe Integration Technologies?

• How old are your legacy backend applications?

• What technologies are they using?

• Is the application code structured or unstructured?

• Did your core applications first start out as commercial offerings?

• What third-party components are embedded in the code?

• How complex is the code and data structure design?

• Do your support teams fully understand the application?

• How many coding ‘standards’ have been used over the past years?

Understanding Your Legacy Applications & API Requirements

• Most mainframe online applications were designed to
interact with 3270 terminals (end user dialog).

• Integration technologies should be transparent to the
backend systems.

• Changing legacy code to work better as an API
introduces more complexity and code to manage.

• Fine grain APIs (microservices) may be easier to build,
but put more work onto the consumer.

• More intelligent the API, less effort for the API
consumer processing logic.

• Legacy mainframe apps are like a box of chocolates, it
is hard to see what is inside.

Legacy Application Complexities

• Message switching / multiple program calls

• Multiple input and output messages

• Variable length, multi-part messages, different layouts

• Complex structures (REDEFINES & ODO)

• Null terminations, non-standard code

• Screen macros

• Conversational dialogs

• External and other 3270 applications

• Complex Conversational Transactions

GT Application Analyzer

11

building blocks

GetAcctNum GetAcctBal GetChecking GetSavings

GetJWT
GetSSN

GetCust GetNewAcct GetCustBal

ID

12

building blocks

IMS(COBOL) IMS(PL/1) IMS(COBOL) REST(web)

.NET
Vendor

IMS CICS REST

JAVA

13

Simple Rest API Provider

14

Simple Rest API Provider

`

15

Simple Rest API Provider

Environment

• IMS

Environment

• IMS

• Ivory Service Architect(API creation & orchestration)

• Github (source version control)

• Jenkins (automation)

• .NET , Java, Node.js , COBOL

• Linux (redhat) JBOSS

• Tomcat

• MoogSoft

• dynatrace

• urbancode

Design Methodology

• Base Services (closely matched to individual Transactions when possible)

• Composite Services (combined calling of multiple base services for business services)

• Outbound calls to third party software from COBOL

Financial

• Domestic Banks
• Domestic Insurance
• International Banks
• International Insurance

• IMS systems of record

• Instant Payment (Europe)

• Outbound calls to Google resources

• Outbound calls to Credit resources

• Outbound calls to Account Control Website

• Outbound calls to Terrorist Check sites

• Inbound API calls to existing IMS Trans with no code change

• ATM system inbound API’s(SOAP then REST)

https://maps.googleapis.com/maps/api/geocode/json?

What Have Customers Asked For…..

• JWT(enhanced)

• Calling out to REST Clients(with orchestration)

• API Repositories(which one)

• DevOPS(urbancode)

•

• CLI based Service creation

JWT(JSON Web Token)

JWT

JWT Sample

Callable(outbound Services)

What are Callable Services?
• Access to SOAP and JSON Services via COBOL or PL/I Call

• Call – Procedural Application Programming Interface (API)

• Used before API became a popular Web / Restful Service Term

What is needed?
• Generation of Callable Service Interface (Call) for COBOL / PL/I

• Processing of all TCPIP Services for Target Service
• Dynamic Marshaling / Parsing of all XML and/or JSON

Callable(outbound Services)

• Command-Line Interface
A command-line interface or command language interpreter (CLI), also known console user

interface and character user interface (CUI), is a means of interacting with a computer

program where the user/client issues commands to the program in the form of successive

lines of text aka command lines. Commonly processed by a command language interpreter

or shell interface.

Ivory StudioCLI

Callable(outbound Services)

• Command Line Interface

• Input…

• OpenAPI (Restful JSON Services)

• WSDL (SOAP XML Services)

• Generates Callable Services

• Removes XML/JSON Complexity

• Output…

• Ivory Service Project

Ivory Studio

Callable(outbound Services)

• Procedural Language API (Call)

• Procedural Language Data Layouts (Copybook)

PL/I

CALL

PL/I

Data

Area

Callable(outbound Services)

Ivory Callable Services

access the JSON/SOAP

on processes and return

a COBOL or PL/I Data Structure.

Ivory CLI automates Callable Services

creation to access external JSON/SOAP

services. Additionally, the Ivory CLI will

build SOAP and JSON Service

wrappers for any CICS or IMS System z

application.

Security………

• AT-TLS
• RACF,ACF2,Top Secret
• WS-*
• SOAP Header
• HTTP/S
• JWT(JSON Web Token)
• Passtickets

Where to put them……………

CA / APIM

SHOW & TELL

What’s Next…………………………….

Zowe

• Zowe

Zowe

• Zowe

Zowe

39

DB2 REST

Cloud

Mobile

WebBusiness
Intelligence

Blockchain

Business
Automation

Application
Integration

Whatever comes next…………………………….

AI

41

API Lessons Learned

COBOL and PL/1

THE GOOD THE BAD THE UGLY

All Data Structures Supported Some structures don’t map
well to distributed Apps

Comp-3, Binary , ODO
REDEFINES, unbounded
sequences

All can be exposed as service
inputs/outputs

Names in COBOL-PL/1 may be
cryptic and need to be
renamed

Blank When Zero.

Can expose existing programs
without changes

May need more data to drive
than the app knows

Message switches, and other
calls

IMS Transactions

THE GOOD THE BAD THE UGLY

Existing Transactions can be
exposed as REST or SOAP

A Transaction may be too fine
grained

Multiple Transactions may
have to be used in service

Data from transaction
returned as a service output

Data may be to convoluted to
use in service

Volume of data may be too
large to return to distributed
client

PFKEY = TRANCODE Maybe need multiple Trans Maybe need to call multiple
Trans in sequence

IMS Transactions Combined

THE GOOD THE BAD THE UGLY

Combine Transactions in one
service

May not work well with others API’s that run for minutes

Use Conversational
Transactions

Long running conversations
may be long running API’s

No understanding of
conversational impact

No Code re-write May be easier to combine
logic to keep from calling
multiples transactions

May return different copybook

IMS Conversational

THE GOOD THE BAD THE UGLY

Wrap a conversation in a
service

Wrap a conversation in a
service

Wrap a conversation in a
service

Use Conversational
Transactions

Long running conversations
may be long running API’s

Conversational rollback

Psuedo-Conversational May need Manual
Intervention

Unforeseen Tran behavior

IMS Multi-Segment Messages

THE GOOD THE BAD THE UGLY

Multiple Segment Output can
be returned from the
transaction

May be variable Length in one
response

May be variable length multi-
segment response

Multiple Segment Input
can be passed to the
transaction

May be variable Length in one
request

Null Termination x’3F’

03 LAST-NAME PIC X(20). | ‘RIVERS ‘ D9C9E5C5D9E24040404040404040404040404040

Ex.

To: ‘RIVERS ‘ D9C9E5C5D9E23F’

<lastName>RIVERS3#A2<lastName>XML

IMS Other…………………

Null Termination x’00’

03 NAME PIC X(20). | ‘RIVERS DUSTY ‘ D9C9E5C5D9E24040400000C4D9E2E3E8

Ex.

To: ‘RIVERS ‘ D9C9E5C5D9E2’

<NAME>RIVERS<NAME>XML

IMS Other…………………

• Founded in 1982 (HQ in Atlanta, GA)

• More than 35 years of market leadership

• Focused on real-time mainframe integration for
strategic business initiatives

• Broad experience across all mainframe and
distributed environments

• Worldwide cross-industry customers and
strategic partnerships

www.GTSoftware.com

