

IMS CDC to Kafka Performance and Tuning

Scott Quillicy SQData Corporation

09-April-2019

©Copyright SQData Corporation 2019 - All Rights Reserve

Agenda

Introduction

- Overview of Apache Kafka
- Key Performance Considerations for CDC Streaming to Kafka
- Initial Load Configuration and Performance
- IMS CDC Streaming Configuration and Performance
- Kafka Producer Performance Factors
- \blacktriangleright Common Operational Issues- \rightarrow What to do When Things Go Wrong
- ≻ Q&A

What is Kafka?

- Ultra-Fast Distributed Stream Processing Platform for Big Data
- Open Source Very Large Community
- Publisher / Subscribe Messaging System
- Highly Scalable, Durable and Fault-Tolerant
- Topics (queues) and Topic Partitions are Separate Log Files

Interest Over Time \rightarrow **Kafka & Hadoop**

Source: Google Trends

Factoring in The Great Divide

©Copyright SQData Corporation 2019 - All Rights Reserve

Replication within Kafka

Source: dzone.com

IMS Transactions & Kafka's Commit Scope

- Interesting Mix of ACID and BASE
- ➢ Source IMS is ACID → Commits and Rollbacks
- ➤ Target Kafka is BASE** \rightarrow No Commits / Rollbacks

Kafka Commit Scope:

- Each Message is Acknowledged
- \checkmark Not Transaction Based** \rightarrow Each Topic is Acknowledged Independently
- \checkmark At Most Once \rightarrow Fastest Could Lose Data
- \checkmark At Least Once \rightarrow Durable Could have Duplicates
- Exactly Once
 - Msgs are Logged Exactly Once No Duplicates
 - Slightly Additional Overhead on Producer
- What Does this Mean to Us?
 - Commit Scope based on Business Requirements
 - Suggest Planning for Duplicate Messages
 - ** Evolving Quickly to Transaction Based Support

Common CDC Streaming Deployment Model

Key Performance Aspects

- Throughput / Latency Primarily Depends on Speed of the Target
- Fortunately, Kafka is a Very Fast Target

Top Items Affecting Performance / Throughput

- Message Size
- Component Scaling Factor
- IMS Initial Load Configuration Data Volume
- IMS CDC Streaming Configuration Trx Size and Arrival Rate
- Kafka Configuration

©Copyright SQData Corporation 2019 – All Rights Reserved

Message Size

- Small Messages Perform Better than Larger Ones (a bit obvious)
- It Boils Down to the Number of Bytes per Message
- IMS Segments can be Large
- Updates can Contain Before and After Images

So...What to Do?

- Use Avro as the Target Data Format
 - ✓ A Condensed Version of JSON
 - \checkmark JSON Typically Used for Data Validation Only \rightarrow Can be Easily Read
 - ✓ Avro Messages Roughly the Size of Source Segment (x 2 for Updates)
- Reduce the Number of Fields in the CDC Message
- Use Compression
 - ✓ Reduces Footprint on Disk and on the Wire
 - Iz4 Appears to be Most Stable Method

Sample IMS CDC Record in JSON Format

```
{"object name":"IMSDB01.SEG02",
"alias":"SEG02",
"stck":"d4c4b51993db0000",
"timestamp": "2018-08-12T11:11:18Z",
"change op":"U",
"seq":"2",
"parent key":{
   "seq1.key1":12345
},
"after image":{
   "fname": "MARY",
   "lname": "JOHNSON",
   "city":"CHICAGO",
   "amount":"4087.66"
},
"before image":{
   "fname": "MARY",
   "lname": "JOHNSON",
   "city":"CHICAGO",
   "amount": "2964.32"
```

}

The Initial Load

✓ Required to Prime the Target(s)
 ✓ Load via Mass Inserts → There are No 'Traditional' Utilities on the Target Side
 ✓ Alternative: Online Snapshots → FTP → Transform → Ingest into Kafka
 ✓ Need to be Able to Scale on Both the Source and the Target Sides
 ✓ Important: Need to be Able to Run Unloads Against Live Databases
 ✓ Recommend → Use a Separate Set of Topics for the Initial Load

The Initial Load \rightarrow Target Side Scaling

- ✓ Parallelize the Ingest Engine
- ✓ One (1) Publisher Subscription
- \checkmark **Desired Behavior** \rightarrow Publisher Latency Should be within a Tolerable Limit

The Initial Load \rightarrow Source Side Scaling

- ✓ Multiple Publisher Subscriptions \rightarrow Split by Database / Partition
- ✓ Parallel Ingest Engines on Target Side 1 per Subscription
- \checkmark Desired Behavior \rightarrow Publisher Latency Should be within a Tolerable Limit

The Initial Load \rightarrow Source Side Scaling...

- ✓ Multiple Unloaders and Publishers
- ✓ Used for High Data Volume
- ✓ Desired Behavior → Minimal Time for the Initial Loads

IMS CDC Streams \rightarrow Methods of Capture

IMS CDC Streams

- ✓ Recommended a Similar Architecture to Initial Loads
- ✓ Start with Basic Configuration and Scale Up as Required
- ✓ Need to be Able to Scale on Both the Source and the Target Sides
- \checkmark **Recommend** \rightarrow Use a Separate Set of Topics for the CDC Streams

IMS CDC Streams \rightarrow Target Side Scaling

✓ Start Here First

- ✓ Parallelize the Ingest Engine
- ✓ One (1) Publisher Subscription
- ✓ Order May Matter Ingest Engines Need to be able to Handle Transaction Order
- \checkmark Desired Behavior \rightarrow Publisher Latency Should be within a Tolerable Limit

IMS CDC Streams \rightarrow Source Side Scaling

- ✓ Multiple Publisher Subscriptions \rightarrow Split by Database / Partition
- ✓ Parallel Ingest Engines on Target Side 1 per Subscription
- \checkmark **Desired Behavior** \rightarrow Publisher Latency Should be within a Tolerable Limit

IMS CDC Streams → **Source Side Scaling...**

- \checkmark Multiple Captures / Publishers \rightarrow Split by IMS Subsystem / Data Sharing Partner
- ✓ Applicable for Segregated Workload (Online vs Batch)
- ✓ Suggest Combining Online SSIDs and Splitting Out Batch SSIDs

Kafka Replication Factor and Throughput

©Copyright SQData Corporation 2019 - All Rights Reserve

Batch Size Affect on Throughput & Latency

✓ Topic are Log Files – Offsets are RBAs – Writes Append to the Tail

- \checkmark Kafka Likes Batches \rightarrow Can Write Multiple Messages without Repositioning
- \checkmark Small Batches \rightarrow Low Latency Ideal for Near Real Time \rightarrow Recommended

 \checkmark Large Batches \rightarrow Increase Latency and Throughput

©Copyright SQData Corporation 2019 - All Rights Reserve

Kafka Topic Partitions

The Upside

- Increases Throughput via Parallelism Producer and Consumer
- Highly Recommended

The Downside

- Increases Chances of Unavailability if a Broker Abends
 - ✓ It Takes Longer to Assign a New Leader if Many Partitions
 - ✓ Est 5ms per Topic Partition, so 10,000 Partitions will Take about 50 secs

May Increase End-to-End Latency

- ✓ Consumer can only See Messages that have been Fully Replicated
- ✓ Est about 20ms to Replicate 1,000 Partitions between Brokers
- ✓ Somewhat Alleviated if Running a Large Cluster

Recommendation

> 100 x b x r, where b is the Number of Brokers and r is the Replica Factor

Common Operational Situations

Target Side

- ✓ Kafka Cluster Outage
- ✓ Kafka Slow

Network Drop

- ✓ Similar to Target Outage, but with a Much Shorter Duration
- \checkmark Tool Should be Able to Restart Where it Left Off \rightarrow No Data Loss

Source Side

- ✓ Compressed PRILOG in IMS RECON
- ✓ Capture / Publisher Outage
- ✓ Capture / Publisher Slow

Kafka Cluster Outage

- ✓ Target Unavailable to Receive Data \rightarrow Ingest Engine(s) will Fail
- ✓ Rare for Kafka to Lose the Whole Cluster, but it Can Happen
- ✓ Data will Start Backing Up on the Source Side
- ✓ **Option 1:** Wait Until Cluster is Available and Restart
 - OK if for a Short Period of Time Depends on Source Transaction Rate
 - Eventually, You Will Reach the Point of No Return
- ✓ Option 2: Spin Off the CDC Data to a File on the Server Process When Cluster Comes Back Up

Kafka Cluster Slow

✓ Throughput Measured with a Calendar – Data Backs Up on the Source Side

✓ Common Causes

- One (1) or More Brokers Down Correct and Restart
- Out of Memory: Set queued.max.requests at a Reasonable Value (more can be trouble)
- Memory Buffers: Should be Entirely in RAM
- Log Files: Review Strategy and Settings There are Many
- ✓ Important: Leverage Monitor Tools such as the Confluent Control Center
- ✓ May Need to Back Off CDC Until Tuning has been Optimized

©Copyright SQData Corporation 2019 - All Rights Reserve

Compressed PRILOG in RECON

©Copyright SQData Corporation 2019 - All Rights Reserve

IMS Capture / Publisher Outage

- ✓ No Data Flowing Downstream Folks Getting Concerned
- ✓ LPAR Down Failover to another LPAR Should Resume Where it Left Off
- ✓ Transient Storage Issue Allocate More Space, if Possible
- ✓ May Take Awhile to Catch-Up
- ✓ Contact the Vendor ASAP if You Cannot Restart

IMS Capture / Publisher Slow

 \checkmark Kafka Not Doing Much \rightarrow Issue is on the Source Side

✓ Common Causes

- Busy System Processes are Running at Low Priority Increase Dispatching Priority
- Abnormally Large Units-of-Work Exclude 'Purgers' (mass deletes)
- Network TCP/IP Window Size Too Small Adjust to Avoid Auto-Adjusting

✓ Important: Make Sure CDC Tool Provides Appropriate Monitoring Metrics

©Copyright SQData Corporation 2019 - All Rights Reserve

Summary

Keep Ingestion Method as Simple and Consistent as Possible

- ✓ Initial Loads
- ✓ CDC Streams

> Understand the Business Requirements

- ✓ End-to-End Latency Expectations
- ✓ Near Real Time may Require More Scaling

- ✓ Dependent Upon Transaction Volume
- Low Latency may Require More Scaling

Have a Solid Recovery Plan

- ✓ Spinning Off CDC Records to Disk on Target Side
- ✓ Reloading Source Data
- ➢ Be Patient with 'The Great Divide' → You Will Need Every Bit
- Select the Right Tools for the Job

IMS CDC to Kafka Performance and Tuning

Scott Quillicy SQData Corporation

09-April-2019

©Copyright SQData Corporation 2019 - All Rights Reserve