

Best Practices Series Populating Big Data Repositories from IMS

Prepared for the: Virtual IMS User Group

7 October 2014

©Copyright SQData Corporation 2014 - All Rights Reserved

Agenda

Introduction

Big Data Overview

- ✓ Background
- Hadoop
- ✓ HBase
- ✓ Cassandra
- ✓ MongoDB

➢ IMS to Big Data

- ✓ Approach
- Considerations

≻ Q & A

Conclusion

About the Speaker

Scott Quillicy

- ✓ 30+ Years Database Experience
- Commercial Database Software Development
- Deployment of Complex Data Integration Solutions

Founded SQData to Provide Customers with:

- ✓ An Enterprise Class Data Integration / Replication Framework
- ✓ A Solution that Handles Both Relational and Non-Relational Data
- Technology Built Around Best Practices

Specialization

- ✓ Database Replication
- ✓ IMS the More Complex, the Better
- ✓ Heterogeneous Database Integration
- Continuous Availability
- ✓ Database Performance

About SQData

- -SQDATA
- "Swiss Army Knife of Data Integration Tools"

Core Competencies

- ✓ High-Performance Changed Data Capture (CDC)
- ✓ Non-Relational Data \rightarrow IMS, VSAM, Flat Files
- ✓ Relational Databases \rightarrow DB2, Oracle, SQL Server, etc.
- Deployment of Complex Data Integration Solutions
- Continuous Availability of Critical Applications
- Data Conversions / Migrations

Customer Usage

- Relational and Non-Relational Data
- ✓ Data Replication Relational and Non-Relational
- ✓ ETL (Bulk Data Extracts/Loads)
- Application Integration
- Business Event Publishing
- Data Conversions / Migrations

What is Big Data?

What You May Have Heard...

- ✓ The 'New Wave' of Technology
- Exclusively Hadoop and/or NoSQL Based
- Advanced Analytics of Disparate Data
- ✓ Big Data 'Knows' What You are Doing... 💽

➢ A Large Collection of Data → Been Around for 50+ Years

Characteristics

- Significant Amount of Data
- Many Different Formats
- ✓ High Rate of Change
- ✓ Complex

Challenges

- ✓ Increasing Data Volumes → Stress Traditional RDBMS
- Computing and Infrastructure Costs to Process / Analyze
- Most Companies in Early Stages of Adoption

Enter Hadoop and NoSQL

Hadoop Family

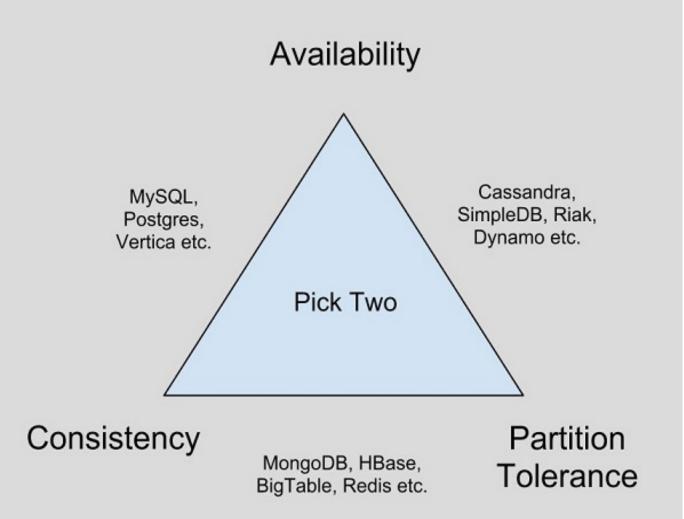
- ✓ HDFS \rightarrow basic file system
- ✓ HBase \rightarrow NoSQL DB built on HDFS
- ✓ HCatalog \rightarrow metadata
- ✓ Hive \rightarrow SQL interface
- ✓ Pig \rightarrow scripting language used for MapReduce for unstructured sources

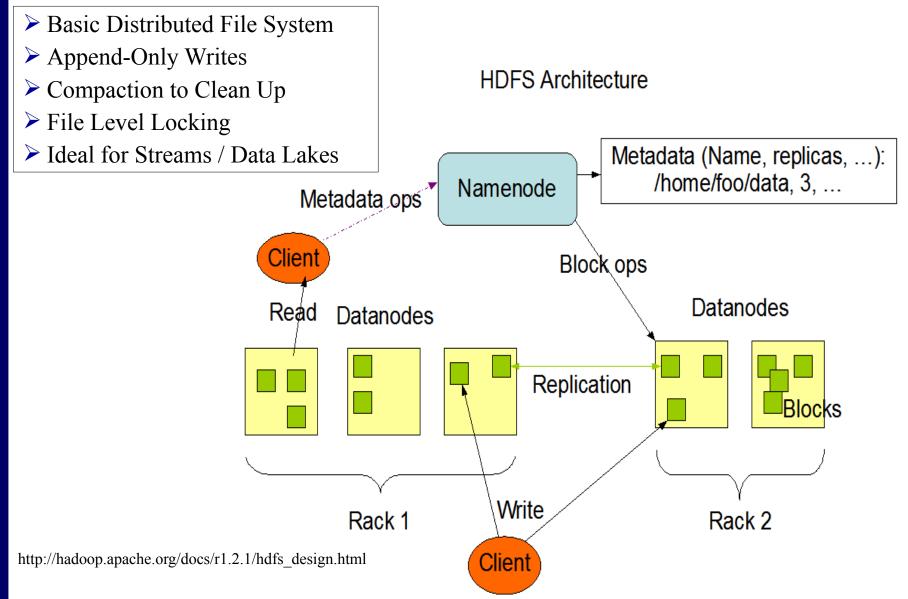
Cassandra

- ✓ Wide-Column Store
- ✓ Handles Very Large Datasets in "Almost" SQL
- Ring Architecture
- Selectable Replication

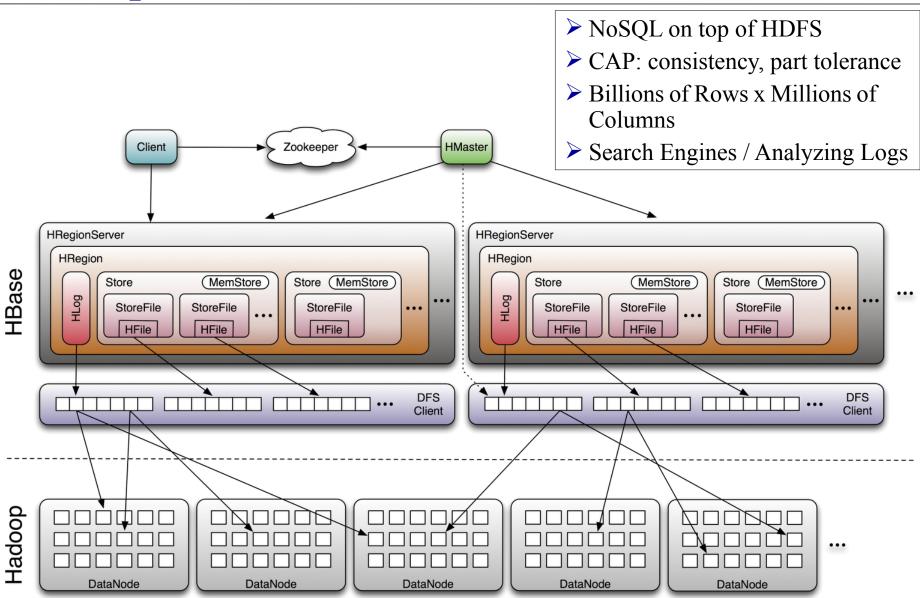
MongoDB

- Popular Document Store
- ✓ JSON / BSON Format
- Master / Slave Replication





CAP Theorem


➢ Eric Brewer - 1998 → Impossible for a Distributed System to Provide All Three (3) Guarantees of Availability, Consistency and Partition Tolerance

Hadoop HDFS Architecture

Hadoop HBase Architecture

©Copyright SQData Corporation 2014 - All Rights Reserved

HBase Data Model

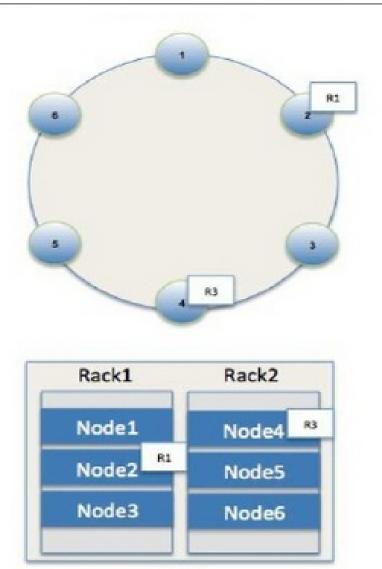
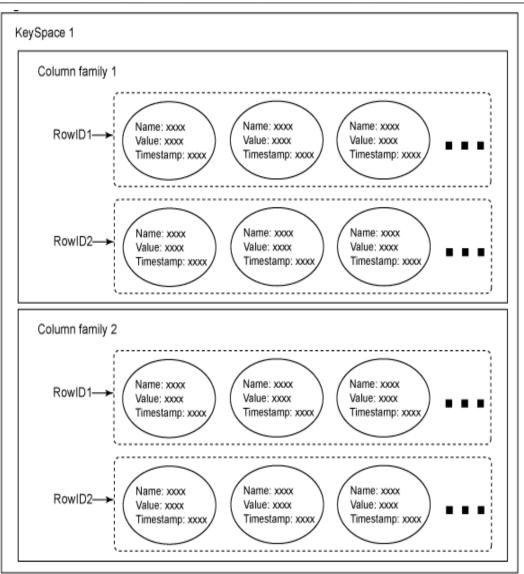

- Table \rightarrow Collection of Rows
- ightarrow Row ightarrow Key & Multiple Columns
- ➢ Column → Family & Qualifier
- \blacktriangleright Timestamp \rightarrow Versioning Time of Write

Table 5.1. Table webtable

Row Key	Time Stamp	ColumnFamily contents	ColumnFamily anchor	ColumnFamily people
"com.cnn.www"	t9		anchor:cnnsi.com = "CNN"	
"com.cnn.www"	t8		anchor:my.look.ca = "CNN.com"	
"com.cnn.www"	t6	contents:html = " <html>"</html>		
"com.cnn.www"	t5	contents:html = " <html>"</html>		
"com.cnn.www"	t3	contents:html = " <html>"</html>		
"com.example.www"	t5	contents:html = " <html>"</html>		people:author = "John Doe"

http://hbase.apache.org/book/datamodel.html#conceptual.view

Cassandra Architecture

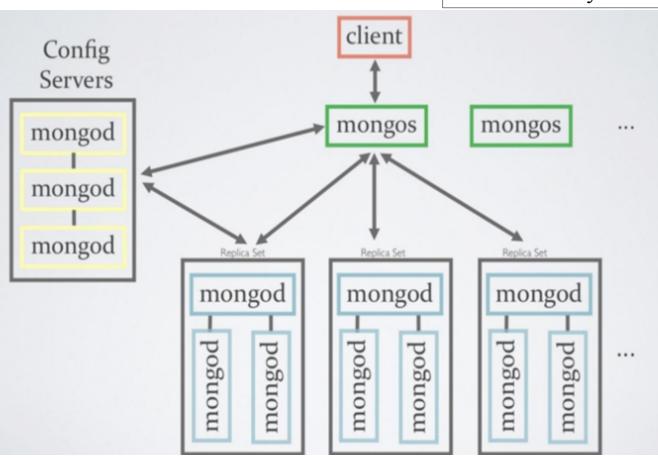


➤ NoSQL – Hashed Keys

- ➢ Wide-Column Store
- Great Read / Write Performance
- ➢ No Transactions / No Joins
- CAP: Availability, Part Tolerance
- ≻ Keys Must be Unique

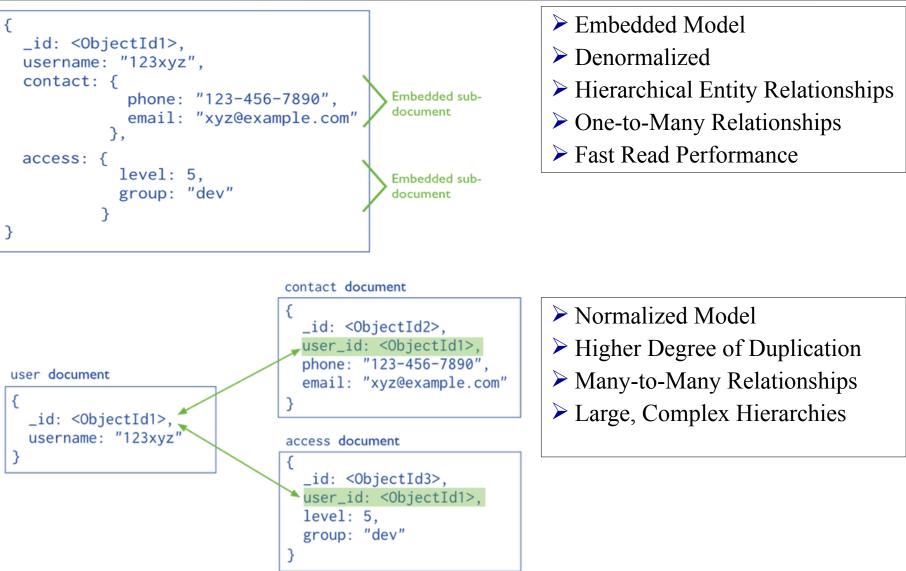
http://www.ibm.com/developerworks/library/os-apache-cassandra/

Cassandra Data Model


≻ KeySpace → Database
 ≻ Column Family → Table
 > Rows → Collection of Columns
 > Columns can be Dynamic
 > Keys Must be Unique

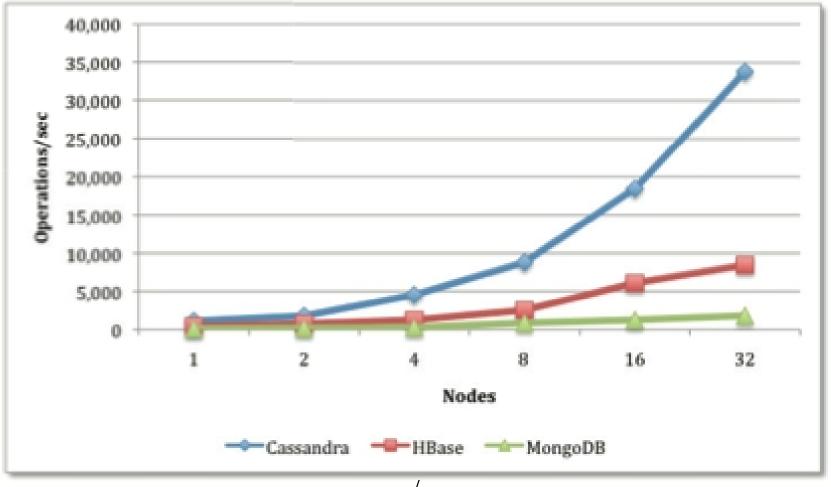
http://www.ibm.com/developerworks/library/os-apache-cassandra/

MongoDB Architecture


➢ NoSQL – Document Store (JSON/BSON)

- CAP: Consistency / Partition Tolerance
- Keys Not Required to be Unique
- Great for Dynamic Queries

©Copyright SQData Corporation 2014 - All Rights Reserved


MongoDB Data Model

http://www.ibm.com/developerworks/library/os-apache-cassandra/

Performance

Read/Write Mix Workload

http://planetcassandra.org/nosql-performance-benchmarks/

Agenda

Introduction

Big Data Overview

- ✓ Background
- Hadoop
- ✓ HBase
- ✓ Cassandra
- ✓ MongoDB

IMS to Big Data

- ✓ Approach
- Considerations

➢ Q & A

Conclusion

Why IMS to Big Data?

- Provide a Method of Analyzing Data Outside of IMS
- Business Intelligence / Advanced Analytics
- \succ Combine with Data from other Apps \rightarrow Structured & Unstructured
- Inexpensive Computing / Storage
- Compliment Established Data Warehouse(s)
- $\blacktriangleright Good News \rightarrow Less Complicated than IMS to Relational$

Best Practices Summary

Let the Business Drive the Effort

- Ensures Proper Alignment with Business Goals
- Queries Drive the Data Model Design
- ✓ Avoid I/T Initiated 'Build it and They will Come'

Temper the Exuberance

- Inevitable After Successful Implementation for a Given Application
- ✓ Technology is Rapidly Evolving \rightarrow What is OK Today may be Obsolete Tomorrow
- ✓ It is More Expensive than the Hype Leads You to Believe

Align with Enterprise Data

- ✓ Where I/T Comes Takes a Lead Role
- Existing Data Warehouse / Business Intelligence Setups
- Infrastructure / Data Integration

Use an Iterative Approach for Implementation

- ✓ Agile / Agile Like
- ✓ Set the Relational Mindset Aside
- ✓ Allows for 'Adjustments' without Major Schedule Impact

Key Considerations

Big Data Repository Selection

- ✓ Consider Open Source Projects → Large Communities
- ✓ Beware of Vendor Lock
- ✓ May Require More than One (1)

Data Delivery / Latency

- Business Driven
- ✓ Full Extracts \rightarrow Periodic
- ✓ Near-Real-Time / Scheduled Changes

Workload Characteristics

- ✓ Read vs Update Ratio
- ✓ Update Volume \rightarrow Changes as a Percentage of a Particular Source
- ✓ Will Effect Big Data Repository Selection

Format

- ✓ Level of Normalization → Less is Usually Desirable
- Privacy / Masking
- Level of Transformation

Common IMS Data Challenges

Code Page Translation

Invalid Data

- Non-Numeric Data in Numeric Fields
- Binary Zeros in Packed Fields (or Any Field)
- Invalid Data in Character Fields

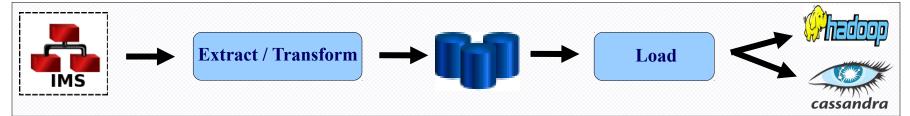
Dates

- ✓ Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
- ✓ May Require Knowledge of Y2K Implementation
- Allow Extra Time for Date Intensive Applications

Repeating Groups

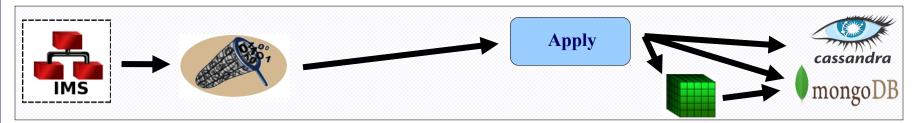
- ✓ Sparse Arrays
- ✓ Number of Elements
- ✓ Will Probably be De-normalized

Redefines

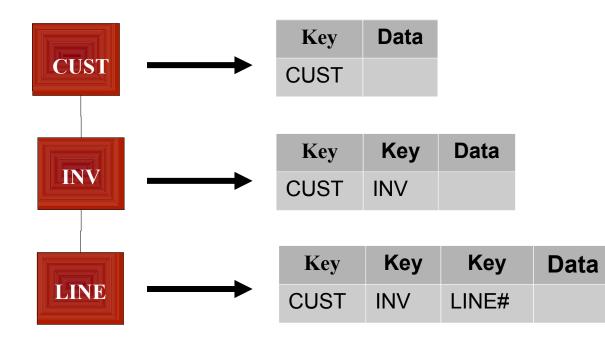

Binary / 'Special' Fields

- ✓ Common in Older Applications Developed in 1970s / 80s
- Generally Requires Application Specific Translation

The Role of ETL and CDC

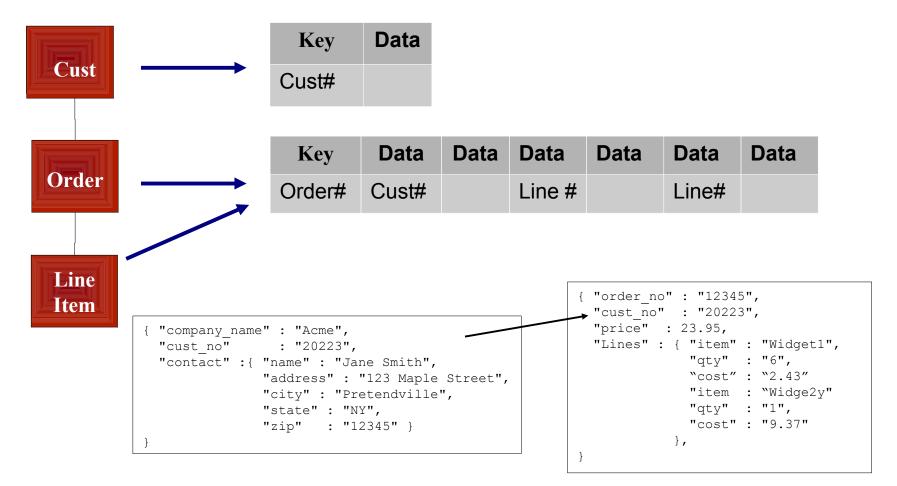

ETL (Extract, Transform, Load):

- ✓ Full Data Extract / Load
- \checkmark Data Transformation Logic Defined in this Step
- ✓ Iterative Process Must be Fast and Efficient
- ✓ Should Minimize Data Landing

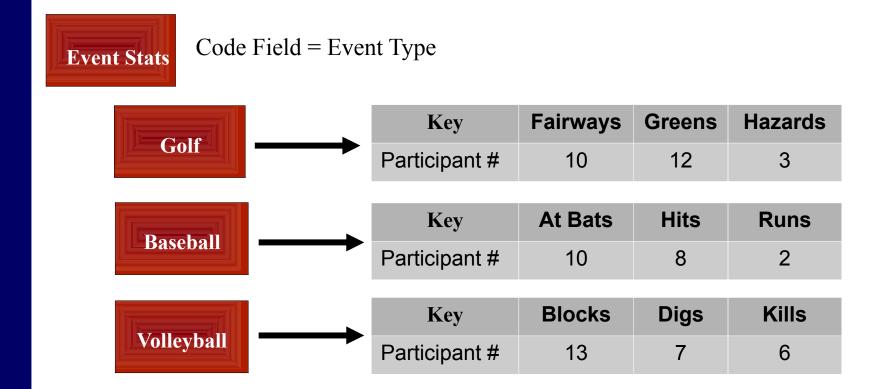

CDC (Changed Data Capture):

- \checkmark Move Only Data that has Changed
- ✓ Ideal for Sequence of Events
- ✓ Re-Use Data Transformation Logic from ETL
- ✓ Near-Real-Time / Deferred Latency

IMS to Relational Model


- \blacktriangleright Normalized \rightarrow at Least 2nd Normal Form
- Each Segment Typically Maps to One (1) or More Tables

IMS to Big Data Model

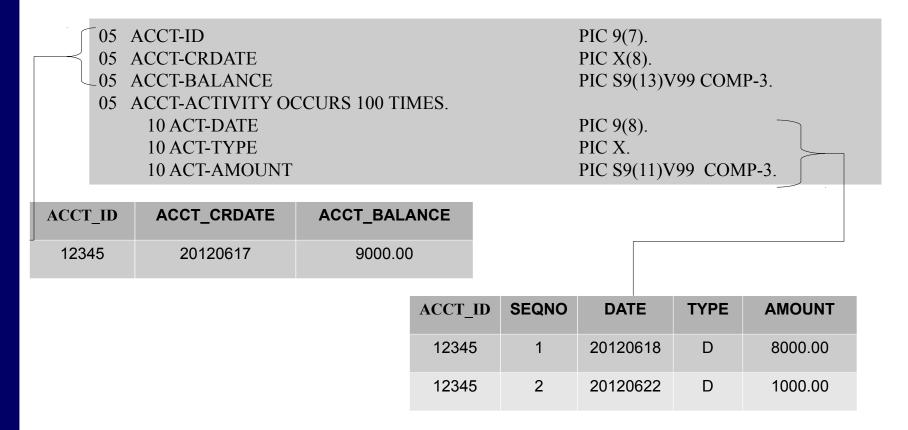

De-Normalized / Minimal Normalization

 \blacktriangleright Degree of Data Redundancy \rightarrow Trade-Off for Query Performance

Redefines: Relational Targets

- Redefine Identified by One (1) or More Code Fields
- Each Redefine Typically Mapped to a Separate Target Table

Redefines: NoSQL Targets


Each Redefine Mapped to Same Target

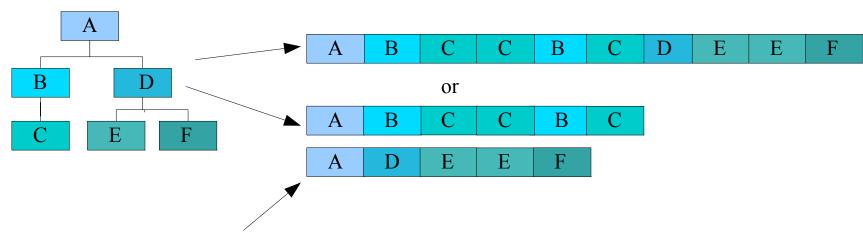
Key	Fairways	Greens	Putts	At Bats	Hits	Runs	Blocks	Digs	Kills
Participant #	10	12	29	10	8	2	13	7	6

Repeating Groups: Relational

- ✓ Typical Candidates for Normalization Based on # Occurs
 ✓ Options:
 - Low # Occurs \rightarrow Keep in Same Table as Rest of Segment
 - Map to Separate Table Requires a Sequence Number

Repeating Groups: NoSQL

- ✓ All Occurrences into the Same Target
- \checkmark No Need for Sequence Number


05 ACCT-ID	PIC 9(7).
05 ACCT-CRDATE	PIC X(8).
05 ACCT-BALANCE	PIC S9(13)V99 COMP-3.
\rightarrow 05 ACCT-ACTIVITY OCCURS 100 TIMES.	
10 ACT-DATE	PIC 9(8).
10 ACT-TYPE	PIC X.
10 ACT-AMOUNT	PIC S9(11)V99 COMP-3.

ACCT_I D	ACCT_CRDATE	BALANCE	DATE	TYPE	AMOUNT	DATE	TYPE	AMOUNT
12345	20120617	9000.00	20120618	D	8000.00	20120622	D	1000.00

ETL and Changed Data Capture (CDC)

> ETL

- ✓ High Level of Control Over Level of De-Normalization
- Can Combine Many Segments in Target Row / Document
- ✓ Requires that ETL Tool can Handle Consolidation during Extract

Changed Data Capture

- May Dictate that Target not Fully Denormalized
- ✓ Capture Along One (1) Branch of IMS DB Record
- ✓ Path / Lookups *may* be Required

Summary

- Let the Business Drive the Effort
- > Temper the Exuberance
- Align with Enterprise Data
- Lose the Relational Model Mentality
- Use an Iterative Approach for Implementation
- \blacktriangleright Be Ready to Change Direction \rightarrow Technology Changes
- Select the Correct Tool Vendor
 - Specializes in Heterogeneous Data Movement
 - Bulk Data Extract & Changed Data Capture / Replication
 - ✓ Willing to Participate with Design & Deployment

Best Practices Series Populating Big Data Repositories from IMS

Prepared for the: Virtual IMS User Group

7 October 2014

©Copyright SQData Corporation 2014 - All Rights Reserved