Real-Time Streaming: IMS to Apache Kafka and Hadoop - 2017

Scott Quillicy SQData

> Outline methods of streaming mainframe data to big data platforms

Set throughput / latency expectations for popular big data targets

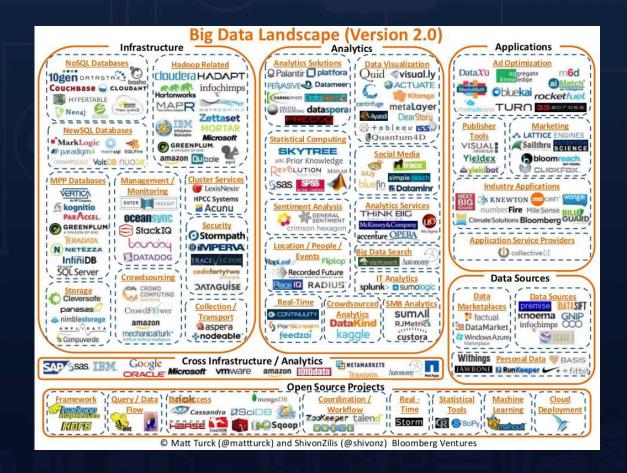
Highlight the top mistakes being made today and how to avoid them

Describe common mainframe streaming issues

Discuss general design / deployment considerations

Agenda

You have a few choices (with more on the way...)



Big Data

The Reality: a large collection of data...in existence for 50+ years

Characteristics

- Significant amount of data
- Advanced analytics of disparate data
- Many different formats \rightarrow structured, semi-structured, un-structured
- High rate of change

Exciting times ahead

- Large open source communities
- Rapid evolution of technology

Challenges

- Increasing data volumes → stress traditional RDBMS
- Computing and infrastructure costs to process / analyze
- Most companies in early stages of adoption

Why Real-Time Streaming of Mainframe Data to Big Data?

Analytics... Analytics... Analytics

Decisions based on current information vs 24+ hour old data Quickly detect key events / trends Maintain a competitive advantage Provide better customer service Increase revenue / profitability

Real-Time vs. ETL

IDC study found that nearly 2/3rds of the data moved by ETL was at least 5 days old before reaching an analytics database.

Survey revealed that it takes at least 10 minutes to move 65% of CDC data into an analytics database.

75% of IT executives worry about data lag that might hurt their business.

27% said data disconnect is slowing productivity.

Over half of respondents said slow data is limiting operational efficiency.

The Great Divide

Today's Popular Big Data Stores

Hadoop HDFS

- Most commonly used Big Data store
- Foundation for other technologies (ie: Spark)
- Highly scalable

Hbase

- NO/SQL key-value store
- Tables split into column families
- Allows for Inserts, Updates
- Intended for real-time queries

Hive

- Data warehouse infrastructure build on HDFS
- Allows for querying data stored on HDFS
- Runs only in batch \rightarrow no interactive
- Intended for analyzing data collected over time

Kafka

- Ultra-fast message broker
- Streams data into most popular Big Data targets
- Multiple producers / consumers
- Ideal for real-time streaming

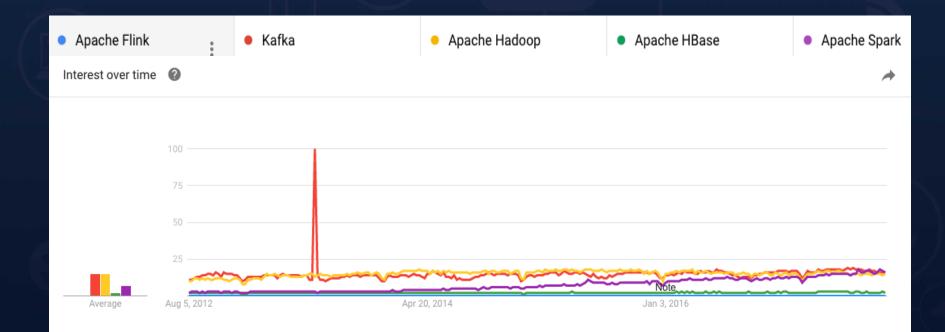
Other Popular Stores

- Cassandra
- MongoDB
- Spark*
- More appearing each day...

Virtual IMS User Group

August 22nd 2017

Interest over Time



Top Mistakes Being Made Today

Top Mistakes Being Made Today

No clear use-case(s)

"Build it and they will come" approach

- Great way to ensure failure
- Minimal focus on business needs
- Often caused by pressure to deploy
- Big Data solution

Data collection overkill

"Everything needs to be in data lakes" approach"

- Wastes time moving data with little business value
- Guarantees timeline and cost overruns
- Value does not exceed the expense (HW, SW, People)

Lack of an enterprise approach / strategy

"We can do it on our own" approach

- Independent deployments \rightarrow departmental fieldoms
- Minimal structure \rightarrow easy way to run amok
- More costly to the business

Technology

- "Just copy the data as is into the data lake" approach
- Minimal understanding of mainframe in general
- Non-relational sources pose a significant challenge IMS / VSAM
 - Re-defines repeating groups and weak Data Types
- Mainframe discipline is often lost on Big Data
 - Improper tool selection Not aligned with enterprise Not strategic → could become obsolete Increased support risks

No Clear Use-Cases

$\text{Key} \rightarrow \text{Business}$ users MUST be involved from the beginning

Pressure to deploy a Big Data solution plays a role

Use case must be clearly defined

- Identify source data elements
- Data delivery \rightarrow real time vs. periodic ETL
- Success criteria fully understood

Use an agile methodology

- Iterative delivery
- Small, achievable milestones
- Start with most important data
- Success realized sooner

Leverage DevOps

- Data scientists
- Business analysts
- Technical operations
- Quality assurance

Data Collection Overkill

Key: focus on important business data first

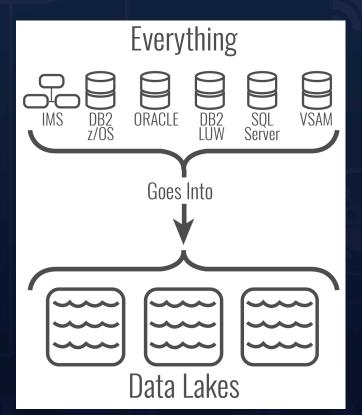
- The project that is rarely completed
- Similar to the old enterprise data warehouse
- Resource intensive
- Success criteria fully understood

Approach in small increments

- Realize success early
- Learn from mistakes
- Manageable costs and time

Involve the business

- They may "want everything"
- Identify key objectives
- Prioritize by importance
- Leverage DevOps / Agile



Lack of an Enterprise Approach / Strategy

Key: Deploy on an Enterprise Platform

Maintain a competitive advantage

- Provide better customer service
- Increase revenue / profitability
- Faster delivery → despite the "I/T Involvement is too much red tape"
- Reduced costs

Challenges

- Departmental fiefdoms → "it's our budget...we'll do it our way"
- Everyone has a different opinion on what is the best option
- Departments may be in I/T realm vs the business

Not Setting Proper Expectations

Reality \rightarrow Projects are at least a 2 to 3 year effort

Relying on estimates from technical folks

- Historically optimistic
- Do not anticipate obstacles
- Not understanding real-time vs. ETL
- Use the tech estimate x 2+

Success can be realized early

- Small subset of important data
- Assume DevOps / Agile
- Base infrastructure in place
- Technically competent team

Learn from others

- Big Data user groups
- Tech conferences
- Consultants

EXPECTATIONS

VS

Virtual IMS User Group

August 22nd 2017

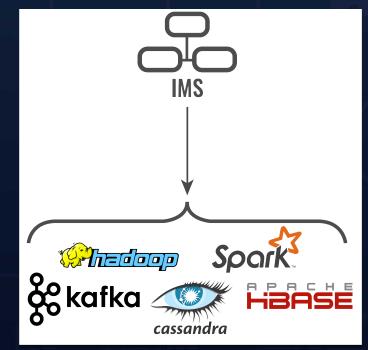
Technology

Minimal understanding of mainframe data Particularly non-relational \rightarrow IMS / VSAM

Common "I had no clue" items

- IMS structures in general
- Repeating groups (occurs)
- Redefines
- Dates
- Invalid data
- 'Special' fields (bits, Y2K, etc.)

Code page translation Transaction consistency Streaming vs. ETL Target apply concepts / streaming Normalization vs. denormalization Not likely to get better...



A Note on Product Selection

Repositories / analytics

- Open source
- Large communities
- Proven results
- Beware of vendor lock

Supporting tools \rightarrow ETL, replication

- Typically requires more than one
- Of little value if source data not understood
- Select the best tool for the use case \rightarrow i.e. mainframe vs twitter

Licensing model considerations

- Typically subscription-based \rightarrow traditional license + maintenance on the way out
- Optimal \rightarrow licensing based on business use case
- Should be able to discontinue at any time \rightarrow no long term commitment

Customer Examples

Use case \rightarrow sales information into Big Data

- Tool selection \rightarrow Cassandra
- Grew to 200 nodes
- Project cost \rightarrow 2 years and \$10M+
- Real-time updates were an afterthought
- Result \rightarrow failed \rightarrow nobody is using it
- Next steps \rightarrow reworking by enterprise group into Hadoop / Spark

Use case \rightarrow financial information into Big Data

- Tool selection \rightarrow MongoDB
- Significant amount of data (multi-TB)
- Grew to 100 nodes
- Project cost \rightarrow 1.5 Years and \$6M+
- Did not realize Mongo does not scale well until it was too late
- Result \rightarrow failed \rightarrow not usable
- Next steps → trying to migrate to Hadoop

mong

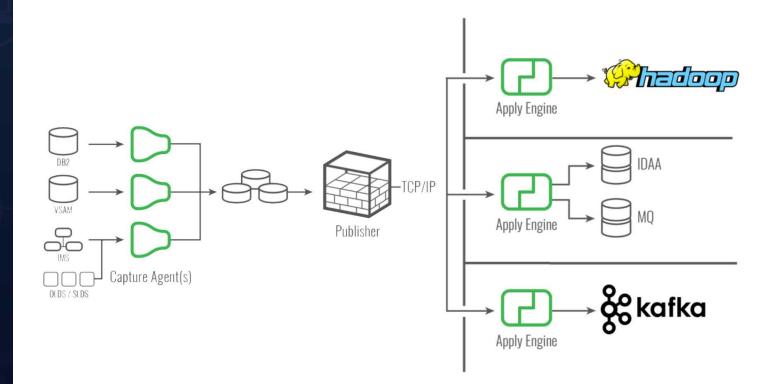
Customer Examples (cont)

Use case \rightarrow financial institution

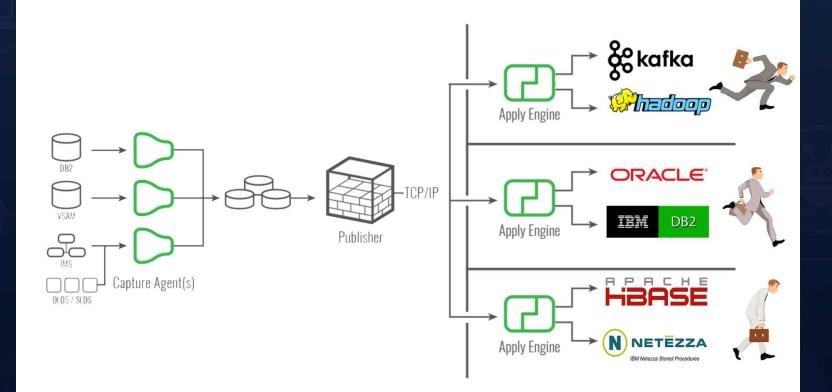
- Tool selection \rightarrow Hadoop, kafka, Spark
- Data dump without understanding relevance or relationships
- Project cost \rightarrow 2+ Years until project cancelled
- Spent a LOT of time just trying to copy the data \rightarrow with mixed results
- Result \rightarrow failed \rightarrow not usable
- Next steps \rightarrow approach in smaller increments \rightarrow leverage what has been done

Mainframe Streaming

Mainframe Data Streaming Illustration



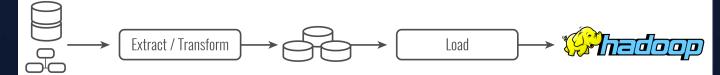
Target Speed and Effect on Latency



The Role of ETL and CDC

ETL (Extract, Transform, Load):

- Full data extract / load
- Data transformation logic defined in this step \rightarrow reused by CDC
- Should be run against live data
- Should minimize data landing



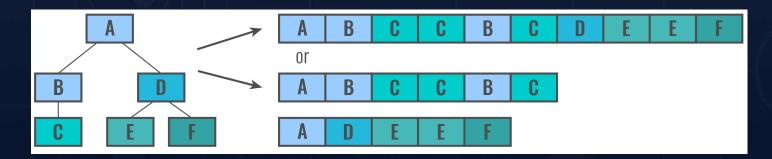
CDC (Changed Data Capture):

- Move only data that has changed
- Re-use data transformation logic from ETL
- Near-real-time / deferred latency
- Allows for time series analytics

ETL and Changed Data Capture (CDC)

ETL

- High level of control over level of de-normalization
- Can combine many source records/rows in target row/document
- Requires that ETL tool can handle consolidation during extract



Changed Data Capture

- May dictate that target not de-normalized \rightarrow depending on the target store
- Target lookups may be required

Common Mainframe Data Challenges

Code page translation (CCSIDs) Invalid data

- Non-numeric data in numeric fields
- Binary zeros in packed fields (or any field)
- Invalid data in character fields

Dates

- Must be decoded / validated if target column is DATE or TIMESTAMP
- May require knowledge of Y2K implementation
- Allow extra time for date intensive applications

Repeating groups

- Sparse arrays
- Number of elements
- Will probably be de-normalized

Redefines Binary / 'Special' Fields

- Common in older applications
- Developed in 1970s / 80s
- Generally requires application
- Specific translation

}}

CDC / ETL Data Format(s)

Recommended formats:

- JSON
- Avro
- Binary

JSON recommended for data validation Avro recommended for production deployment Sample update CDC record in JSON format

```
{"DEPT": {
"database": "EMPLOYEE",
"change op" : "U",
"change time": "2015-10-15 16:45:32.72543",
"after image" : {
    "deptno": "A00",
    "deptname": "SPIFFY COMPUTER SERVICE DIV.",
    "mgrno" : "000010",
    "admrdept" : "A00",
    "location" : "Chicago"
},
"before image" : {
    "deptno": "A00",
    "deptname": "SPIFFY COMPUTER SERVICE DIV.",
    "mgrno" : "000010",
    "admrdept" : "A00",
    "location" : "Dallas"
```

Virtual IMS User Group

August 22nd 2017

Acid vs. Base

ACID

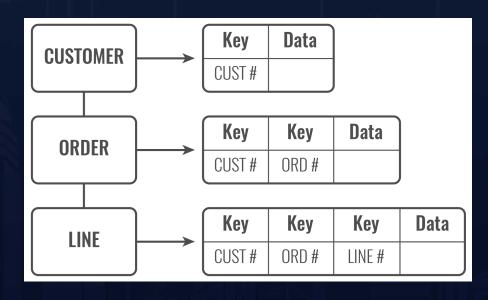
- Guarantees DB transactions are processed reliably
- Atomicity \rightarrow all or nothing
- Consistency \rightarrow one valid state to another
- Isolation \rightarrow concurrency
- Durability \rightarrow once a transaction commits, it remains committed

BASE

- "Eventually consistent"
- Basically available \rightarrow data is there...no guarantees on consistency
- Soft state \rightarrow data changing may not reflect commit scope
- Data will eventually be consistent

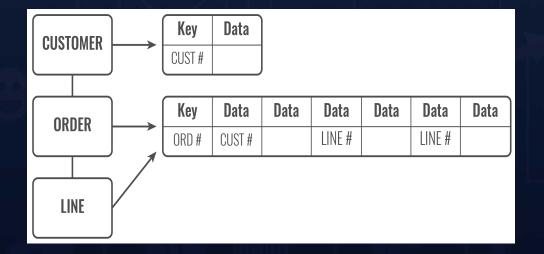
Design: Traditional IMS / VSAM to Relational

Each segment maps to one (1) or more tables Strong target data types may require additional transformation Tendency to over design / over normalize Still required for relational type targets (PDA, Netezza, Teradata, etc.)



Design: IMS / VSAM to Big Data

De-normalized / minimal normalization Still requires transformation (dates, binary values, etc.) Good news \rightarrow source structures already setup for Big Data



{ "company_name" : "Acme",
"cust no" : "20223",
"contact" :{ "name" : "Jane Smith",
"address" : "123 Maple Street",
"city" : "Pretendville",
"state" : "NY",
"zip" : "12345" }
}
{ "order_no" : "12345", 🖞
"cust_no" : "20223",
"price" : 23.95,
"Lines" : { "item" : "Widget1",
"qty" : "6",
"cost" : "2.43"
"item : "Widge2y"
"qty" : "1", "cost" : "9.37"
},
1

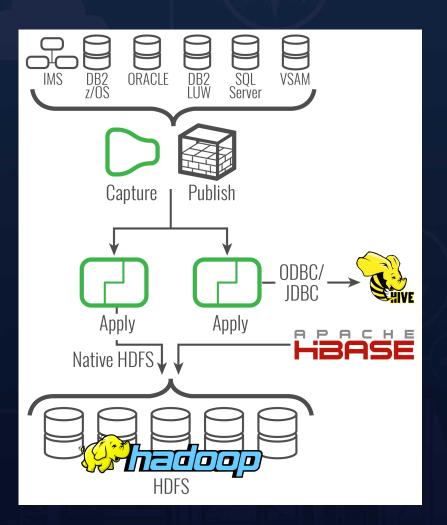
Streaming to Hadoop

HDFS format \rightarrow CSV, JSON, Avro Typical use \rightarrow multiple files for same content

- File size based on # records / time interval
- Requires multi-file management

Partitioning \rightarrow based on source value(s)

- Not native in HDFS
- Based on source data value(s)
- Requires cross-partition multi-file management



Virtual IMS User Group

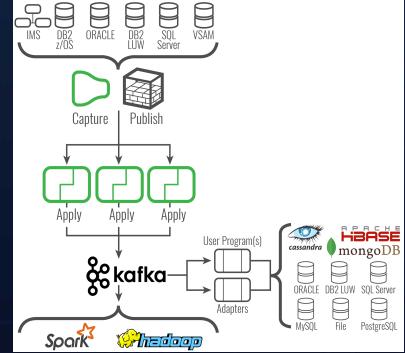
August 22nd 2017

kafka

High-throughput, low-latency message broker Open sourced by LinkedIn 2011 / Apache 2012 Supports a variety of targets → more on the way Leverage JSON/Avro message format for CDC

Use cases:

- Basic messaging \rightarrow similar to MQ
- Website activity tracking
- Metrics collection / monitoring
- Log aggregation
- Streaming



Best Practices Summary

Approach with a comprehensive strategy

- Common infrastructure / tools / support
- Established methods (DevOps / Agile)
- Beware the "fiefdoms"

Involve the business from the beginning

- They understand the source data
- They know the order of importance
- They can assist in design validation, QA, etc.

Avoid the data collection overkill

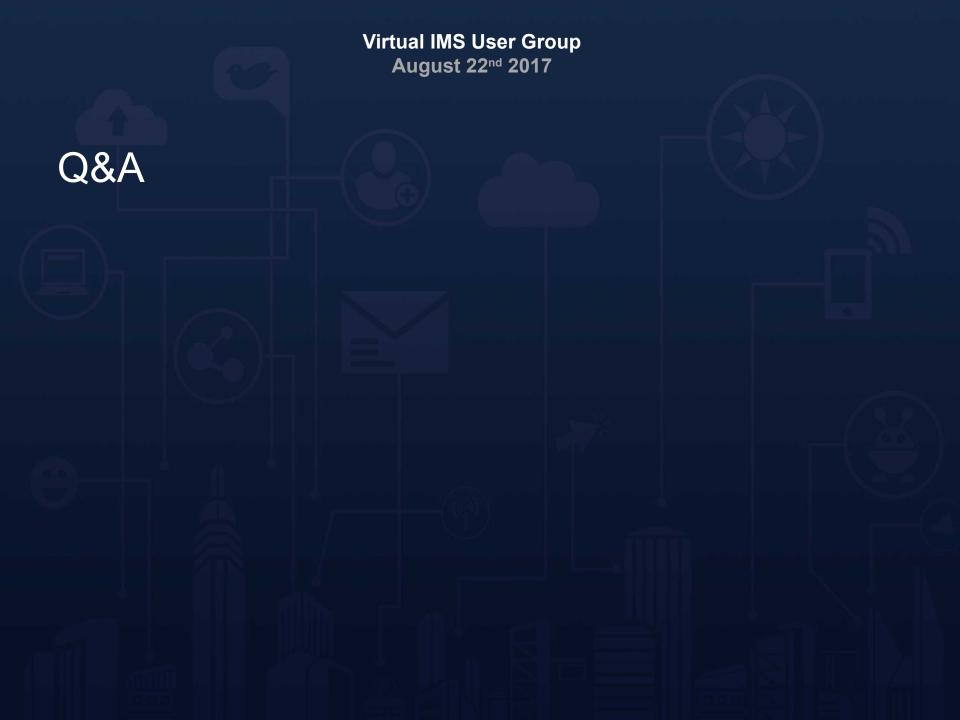
- Time and \$\$\$ killer
- Focus on most important data first
- Iterate through remaining data \rightarrow prioritize by importance

Set proper expectations

- 2 to 3 years minimum is expected...for an entire project
- Deliver in Increments \rightarrow most important data first

Understand IMS data is 'special'

- Patience is key
- Ask for help...



Scott Quillicy SQData squillicy@sqdata.com

Real-Time Streaming: IMS to Apache Kafka and Hadoop

© SQData Corporation., 2017. All rights reserved. Original materials are the property of SQData Corporation. No part of this publication may be reproduced without the express written permission of SQData Corporation. Db2, z/OS, PureSystems, PureData, and Netezza are registered trademarks of IBM Corporation. All other trademarks, registered trademarks, product names, and company names and/or logos cited herein, if any, are the property of their respective holders.