

Replicating IMS to IDAA and PureData Analytics

Prepared for the: Virtual IMS User Group

11 August 2015

©Copyright SQData Corporation 2015 - All Rights Reserved

Agenda

- Introduction
- DB2AA / PureData Analytics (PDA) Overview
- Update Performance Statistics
- Load & Replication Strategy
- Accelerator Only Tables
- Design Considerations
- ≻ Q & A
- Wrap Up

About the Speaker

Scott Quillicy

- ✓ 30+ Years Database Experience
- ✓ Database Software Development
- ✓ Performance & Availability

Founded SQData to Provide Customers with:

- ✓ A Better Way of Replicating Mainframe Data...Particularly IMS
- Solutions that Combine Expertise with Technology
- Technology Built Around Best Practices

Specialization

- ✓ Data Replication
- ✓ IMS to Relational
- Heterogeneous Database Integration
- Continuous Availability
- Advanced Data Analytics

About SQData

Enterprise Class Changed Data Capture & Replication

Core Competencies

- ✓ High-Performance Changed Data Capture (CDC)
- ✓ Non-Relational Data \rightarrow IMS, VSAM, Flat Files
- ✓ Relational Databases \rightarrow DB2, Oracle, SQL Server, etc.
- Deployment of Complex Data Integration Solutions
- Continuous Availability of Critical Applications
- Data Conversions / Migrations

Customer Use Cases

- ✓ Near-Real-Time Operational Data Stores (ODS) from Multiple Sources
- ✓ Continuous Availability → Active/Active, Active/Passive
- ✓ ETL (Bulk Data Extracts/Loads)
- Application Integration
- Business Event Publishing
- ✓ Data Warehouse Population

Why Replicate IMS to DB2AA / PDA?

- Provide a Method of Analyzing Data Outside of IMS
- Real-Time Business Intelligence / Advanced Analytics
- Bulk Loads can be Resource Intensive
- Combine with Data from other Applications
- Save Significant CPU Cycles for Intense Queries
- Compliment Established Data Warehouse(s)

PureData Analytics (PDA)

- Netezza Appliance
- Acquired by IBM in 2010 Data Analytics Strategy

© Copyright IBM Corporation

Transforms the User Experience

- ✓ Purpose-built analytics engine
- ✓ Integrated database, server and storage
- ✓ Standard interfaces
- ✓ Low total cost of ownership

Speed: 10-100x faster than traditional systems Simplicity: Minimal administration and tuning Scalability: Peta-scale user data capacity Smart: High-performance advanced analytics

DB2 Analytics Accelerator (DB2AA)

- Netezza Appliance Coupled to DB2
- Minimal Application Changes Required

The hybrid computing platform on zEnterprise

- Supports transaction processing and analytics workloads concurrently, efficiently and costeffectively
- Delivers industry leading performance for mixed workloads

DB2 Analytics Accelerator and DB2 for z/OS

The Role of ETL and CDC

ETL (Extract, Transform, Load):

- ✓ Full Data Extract / Load
- \checkmark Data Transformation Logic Defined in this Step
- ✓ Iterative Process Must be Fast and Efficient
- ✓ Should Minimize Data Landing

CDC (Changed Data Capture):

- ✓ Move Only Data that has Changed
- ✓ Re-Use Data Transformation Logic from ETL
- ✓ Near-Real-Time / Deferred Latency

Performing the Initial Load

- \succ Transformation / Mapping Logic Done Here \rightarrow Reused in CDC
- Should be Able to Run Against Live Sources
- ➢ Make Sure to Truncate Before Loading → Otherwise Duplicates
- May be Used in Leu of Incremental Updates (CDC)

> NZLOAD

- ✓ Native Loader
- Allows for Rapid Loading of PDA Tables

IDAA Loader (recommended component)

- ✓ IBM Product Offering
- ✓ Allows Simultaneous Loading into DB2 and IDAA
- ✓ Allows IDAA Only and AOT Loads

Insert, Update and Delete Behavior

➢ Updates → Delete / Insert Pairs

Inserts

- ✓ Appends Data to End of File \rightarrow Very Fast
- Speed is Based on Number of Rows Being Inserted

Deletes

- Must Scan Entire File
- ✓ Select Row Update with Delete Flag
- ✓ Replace Row in Place
- Groom Process Cleans up Files
- ✓ Speed is Based on Size of File and Number of Rows Being Deleted

Insert / Delete Performance

With and Without Distribution and Organizing Keys

	Ro	ws	Elapsed tim	e (seconds)		
Test scenario	Inserted	Deleted	INSERT	DELETE	Total	Improvement
Separate INSERT and DELETE with random distribution	43,916,377	22,007,406	7093	5997	13,091	
Separate INSERT and DELETE with DISTRIBUTE and ORGANIZE on unique key	43,916,377	22,007,406	5200	5088	10,288	27%
Mixed INSERT and DELETE with random distribution	43,916,377	22,007,406	9232	5733	14,966	
Mixed INSERT and DELETE with DISTRIBUTE and ORGANIZE on unique key	43,916,377	22,007,406	6544	4448	10,992	36%

Delete Performance \rightarrow **Table Size**

Replication Strategy

- General Approach: Apply in 'Batches' vs Continuous
- ► Expectations on Latency → Minutes vs Sub-Second

Time Series Data

- Tracks Lineage of Changes
- Common Deployment to Track
 - Customer Tendencies
 - Campaign Effectiveness
 - Correlation of Events
- ✓ All Changes Applied as Inserts
- ✓ **Options** \rightarrow Batches or Continuous Feed

Synchronized Data

- Source and Target Match at any Given Time
- Inserts, Updates and Deletes must be Processed
- ✓ **Option** \rightarrow Batches

Target Key Selection

Golden Rule \rightarrow Good Distribution = Good Performance

Objective

- All Tables are Distributed Across All Active Database Blades
- All Queries Run Parallel Against All Active Database Blades
- ✓ All Loads Run Parallel Against All Active Database Blades

Distribution Key Selection

- Primary Key of Source Data
- Columns Used for Joins
- Columns with High Cardinality
- Columns Frequently Aggregated On

Organizing Key Selection

- ✓ Only Use on Tables with > 1M Rows
- ✓ One or More Columns of Primary Key → Incremental Update Performance
- Columns Used as Common Predicates

ACID vs BASE

➢ ACID → Properties Guarantee DB Transactions are Processed Reliably

- ✓ Atomicity \rightarrow All or Nothing...either the Transaction Commits or it Doesn't
- ✓ Consistency \rightarrow Transaction brings DB from One Valid State to Another
- ✓ Isolation \rightarrow Concurrency
- ✓ **D**urability \rightarrow Once a Transaction Commits, it Remains Committed
- $\blacktriangleright BASE \rightarrow Eventual Consistency$
 - ✓ Basically Available \rightarrow Data is There...No Guarantees on Consistency
 - ✓ Soft State → Data Changing Over Time...May Not Reflect Commit Scope
 - ✓ Eventual Consistency → Data will *Eventually* become Consistent

More Info: Charles Rowe – Shifting pH of Database Transaction Processing http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

©Copyright SQData Corporation 2015 - All Rights Reserved

IMS to PDA Replication Illustration

©Copyright SQData Corporation 2015 - All Rights Reserved

IMS to DB2AA Replication

Accelerator Must Know About Apply Processes

Recommend: PTF 5

Accelerator Only Tables

- ✓ Allows Update DML against Tables in Accelerator
- ✓ Apply Process can Perform Inserts/Deletes via DB2
- ✓ Decent Throughput Today → Will Only Get Better in the Future

AOT Restrictions

- ✓ Currently only Supported in DB2 V10
- ✓ Single Row Inserts Multi-Row Inserts in Development
- Transient in Nature
- Cannot be Enabled for Incremental Update
- Cannot Backup/Recover via Utilities

DB2AA Tables

Non-accelerated DB2 table

Data in DB2 only

Accelerated DB2 table

Data in DB2 and the accelerator

Archive table / partition

- Empty read-only partition in DB2
- Partition data is in accelerator only

Accelerator-Only table (AOT)

- "Proxy table" in DB2
- Data is in accelerator only

© 2015 IBM Corporation

Query Workload Before AOTs

© 2015 IBM Corporation

Query Workload \rightarrow After AOTs

© 2015 IBM Corporation

Running Queries on the Accelerator

➢ Special Register → CURRENT QUERY ACCELERATION

Mandatory Criteria

- ✓ All Tables in Query (Join) Exist in the Accelerator
- ✓ Query is Defined as Read Only Except AOTs
- Cursor is Not Defined as Scrollable
- Row Set Cursor is Not Remote
- ✓ Query is from a Package and Not a Plan with DBRMs
- ✓ Query is a SELECT or INSERT FROM SELECT Statement

SQL Restrictions

- ✓ Special Registers Other Than:
 - CURRENT DATE
 - CURRENT TIME
 - CURRENT TIMESTAMP
- ✓ Sequence Expressions \rightarrow NEXTVAL or PREVVAL
- ✓ User Defined Functions (UDFs)
- ✓ MIN / MAX with Strings or More than Four (4) Arguments

IMS to DB2AA Replication Illustration

©Copyright SQData Corporation 2015 - All Rights Reserved

Design Considerations

The MOST IMPORTANT Component

IMS to Relational Model is a Good Start

- Design for End Queries
- ✓ *Some* Denormalization $\rightarrow 2^{nd}$ Normal Form

Load and CDC

- ✓ Define Transformation/Business Logic Once
- ✓ Stream Loads → Minimize Data Landing
- ✓ CDC → Determine Latency Requirements and Related Tables (for apply groups)
- Transaction Volume and Apply Method

Recovery

- Same as for Traditional Relational
- ✓ Stream Loads...CDC Catchup

Monitoring

- System Log Monitoring
- On-Demand via a Dashboard
- Notification of Key Events

Common IMS Data Challenges

Code Page Translation

Invalid Data

- Non-Numeric Data in Numeric Fields
- Binary Zeros in Packed Fields (or Any Field)
- Invalid Data in Character Fields

Dates

- ✓ Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
- ✓ May Require Knowledge of Y2K Implementation
- Allow Extra Time for Date Intensive Applications

Repeating Groups

- ✓ Sparse Arrays
- ✓ Number of Elements
- Will Probably be De-normalized

Redefines

Binary / 'Special' Fields

- Common in Older Applications Developed in 1970s / 80s
- Generally Requires Application Specific Translation

General Approach

- \checkmark Each Segment Maps to One (1) or More Tables
- ✓ Helpful → Keep Source Fields and Target Column Names Similar
- ✓ Design Considerations
 - Duration \rightarrow Lower for Rehost...Higher for BI/DW
 - Strong Target Data Types will Require Additional Transformation
 - Be Careful to Avoid the 'Over Design'
- ✓ **Best Practice**: Keep Things as Simple as Possible

IMS to Traditional Relational Model

 \blacktriangleright Normalized \rightarrow at Least 2nd Normal Form

Each Segment Typically Maps to One (1) or More Tables

Alternative → **IMS to Big Data Model**

De-Normalized / Minimal Normalization

 \blacktriangleright Degree of Data Redundancy \rightarrow Trade-Off for Query Performance

Keys

- ✓ Fairly Straightforward → IMS Key Structure Simplifies Things
- ✓ Carry Parent Keys in Dependent Tables
- \checkmark Use these Unique Keys as Distribution Keys in Accelerator
- ✓ Plan on Source Keys Containing Multiple Fields with Different Data Types
 - Character, Packed, Binary

		Key	Data			
CUST		CUST				
		Key	Кеу	Data		
		CUST	INV			
	•	Key	Кеу	КеуА	КеуВ	Data
		CUST	INV	LINE-A	LINE-B	

Redefined Fields

- \checkmark Extends Analysis Timeline More Often than Not
- ✓ Requires Consult with SME and/or Research to Determine Which Field to Use
- ✓ Options for Simple Redefines:
 - Map Least Restrictive Field (PIC X)
 - Map Both Fields

05 ACCOUNT-ID	PIC 9(7).
05 ACCOUNT-ID REDEFINES ACCOUNT-NO	PIC X(7).

- ✓ Options for Complex Redefines:
 - Map More Granular Field(s) \rightarrow Will Require More Data Cleansing / Transformation
 - Map All Fields

05	ACCOUNT-ID	PIC X(5).
05	ACCOUNT-ID REDEFINES	ACCOUNT-NO.
	10 ACCOUNT-PREFIX	PIC X(1).
	10 ACCOUNT-NUMBER	PIC S9(7) COMP-3.

Non-Keyed Segments

- ✓ Commonly Used for Text / Comments
- ✓ Straightforward for ETL
 - Unload in Order of Occurrence
 - Optional: Use a Sequence Number to Keep Things in Order on Target Side
- ✓ Tricky for CDC
 - Only Have Access to Parent Key(s)
 - Option 1: Set Apply Key to Include All Non-Keyed Data (exclude sequence #)
 - Option 2: Fully Materialize All Non-Keyed Segments when 1 Changes
 - Make Sure Your ETL/CDC Tool Can Handle Non-Keyed Segments

CTIST	 Key	Data	
	C123		
	Key	SEQNO	Data
NOTES	 Key C123	SEQNO 1	Data abcdefghij

Repeating Groups: Relational

- ✓ Typical Candidates for Normalization Based on # Occurs
 ✓ Options:
 - Low # Occurs \rightarrow Keep in Same Table as Rest of Segment
 - Map to Separate Table Requires a Sequence Number

Alternative → **Repeating Groups: Big Data**

- ✓ All Occurrences into the Same Target
- ✓ No Need for Sequence Number

05 ACCT-ID	PIC 9(7).
05 ACCT-CRDATE	PIC X(8).
05 ACCT-BALANCE	PIC S9(13)V99 COMP-3.
\rightarrow 05 ACCT-ACTIVITY OCCURS 100 TIMES.	
10 ACT-DATE	PIC 9(8).
10 ACT-TYPE	PIC X.
10 ACT-AMOUNT	PIC S9(11)V99 COMP-3.

ACCT_I D	ACCT_CRDATE	BALANCE	DATE	TYPE	AMOUNT	DATE	TYPE	AMOUNT
12345	20120617	9000.00	20120618	D	8000.00	20120622	D	1000.00

Summary

PDA / DB2AA are High Value Data Analytics Weapons

Analytics against Current Data is *Critical*

- Maintaining a Competitive Edge
- Real-Time Trend Detection
- Customer Tendencies and Correlation with other Events

Design Carefully

- Keep as Simple as Possible
- Start with Traditional IMS to Relational Model
- ✓ Ask for Assistance from Those with the Experience
- Stay Flexible
 - Technology is Changing Quickly
 - Solution Must be Portable to Another Platform (i.e. Spark, Hadoop, etc.) with Minimal Changes

Replicating IMS to IDAA and PureData Analytics

Prepared for the: Virtual IMS User Group

11 August 2015

©Copyright SQData Corporation 2015 - All Rights Reserved